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Reaction-Diffusion Equations and Morphogenesis using Galerkin Methods 
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Benjamin M. Heineike 
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Professor Reza Malek-Madani 
Associate Professor Sonia Garcia 

 

1.  Introduction: Modeling Morphogenesis 

 In the context of embryology, morphogenesis is, as its Greek roots suggests, the part of 

the process of development where shape and form begin to emerge.  The process by which each 

nearly identical stem cell makes the initial decision to take the unique pathway that leads it to 

fulfill its role as a specialized, functional cell in the fully-grown organism is still largely a 

mystery.  After the cells have taken those first steps, their subsequent development is better 

understood, but the nature of the initial impulse that causes one cell to become a muscle cell and 

another to become a nerve cell is just beginning to be understood.  

Two years before Alan Turing died in 1954, he published a paper entitled “The Chemical 

Basis of Morphogenesis” in the Philisophical Transactions of the Royal Society of London[25] 

that had a much different flavor than the work on computing machines and artificial intelligence 

for which he was so famous.  Today his paper is the cornerstone of a body of scientific literature 

suggesting that the basis of morphogenesis lies in the pattern formation capabilities of certain 

chemicals thought to be present in an early embryo, which Turing dubbed morphogens.  

According to the theory, by the time the genes begin to create proteins in a growing embryo, 

there is already a chemical pattern of morphogens present in the background of the tissue.  These 

morphogens interact physically and chemically with one another to create patterns.  These 

chemical patterns provide initial developmental signals to the genes that cannot diffuse 
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themselves between neighboring cells.  If the interactions of the morphogens were effected 

primarily by chemical reactions and physical diffusion, Turing suggested that one could model 

their pattern formation mathematically using physical and chemical laws.  More specifically, one 

could model morphogenesis with a particular class of partial differential equations called 

reaction-diffusion equations.  In 1991, Lewis Wolpert articulated a theory of positional 

information in his book The Triumph of the Embryo[27] in which genes were influenced by 

morphogen concentrations distributed in a gradient.  In one example the location of each digit on 

a chick’s wing was thought to be pinpointed by a corresponding concentration of the morphogen, 

retinoic acid, which decreased as it diffused away from a source along the antero-posterior axis 

of the wing (which is the axis determined by a pencil in one’s hand if it were held with a closed 

fist).  

Only recently with the work of researchers like Ouyang, Swinney, and Petrov [17],[19] 

have experimental “Turing Patterns” been exhibited on actual biological chemicals in a 

laboratory.  The self-organizing patterns that biologists are seeing in their petri dishes and 

gelatinous solutions have been organizing themselves for years on the computer screens of 

mathematicians [9],[14],[15],[18].  From the time that Turing first showed that nonhomogeneous 

solutions existed for reaction-diffusion systems modeling morphogenesis in a simple ring of 

cells, there has been significant interest in the types of patterns that arise in the solutions of these 

reaction-diffusion equations. 

  Reaction-diffusion equations are partial differential equations (PDEs) which model the 

way collections of particles behave taking into account two forces.  First, they model the way 

that the particles interact with one another at a given point in space, described in chemical terms 

as their reactions.  Second, they model the way that a given particle distributes itself in space, 
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diffusing from regions of higher concentrations towards regions of lower concentrations.  

Reaction-diffusion equations can model more than just morphogenesis, having been used in the 

past to model population densities, host/parasite models [20], electrical reactions that occur 

between nerve cells [8], and chemical waves such as those found in the Belousov-Zhabotinsky 

reaction (ch. 7, [15]).  Turing’s remarkable discovery was the fact that the presence of diffusion, 

which acts in a region to distribute particles more homogeneously, given the right interactions 

between particles being modeled, could help initiate very interesting, nonhomogeneous patterns.   

Only today with advanced computer technology and mathematical methods are we 

beginning appreciate the rich pattern formation capabilities of these models.  As a general rule, 

the variability of the initial and boundary conditions as well as the complex interaction between 

concentrations over both space and time preclude a simple algorithmic solution to a reaction-

diffusion system.  As with most partial differential equations used in modeling, exact solutions 

are seldom discovered or even attempted.  Therefore, to investigate our reaction-diffusion 

system, which models two morphogens in two dimensions, we will turn towards approximate 

solutions.  Recent advancements in scientific computing and numerical analysis have increased 

the availability of high-powered computing resources to researchers, rendering approximate 

solutions of partial differential equations an efficient and reliable tool.   

 The particular approximation method that we will use is called the Galerkin Spectral 

method.  Many approximation methods (the Finite Difference method for instance) break the 

problem into smaller workable bits by dividing the spatial domain into pieces on a mesh and then 

putting the individual puzzle pieces of the solution back together.  Instead of breaking the 

solutions down into puzzle pieces, spectral methods can be thought of as breaking the solution 

into layers.  We assume that the solution to the system can be written as a linear combination of a 
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product of unknown functions in time with known basis functions over space.  The Galerkin 

method is a way to determine these unknown functions in time by eliminating spatial dependence 

using inner products.   

Galerkin methods reduce PDEs to a collection of Ordinary Differential Equations (ODEs) 

in time.  For an exact solution, we would need a system of infinitely many ODEs, but for our 

purposes a finite approximation will be sufficient to capture the overall behavior of the system.  

The primary advantage of the Galerkin method is that it is relatively easy to program and to 

increase the number of “layers” in the approximate solution. As will become clear in the 

subsequent sections, just as one is able to increase the accuracy of a Fourier series representation 

of a solution by taking more terms in the Fourier basis, we are able to add more accuracy to our 

approximate solution by taking more terms in the so-called Galerkin basis.  

 The focus of this project is to create a body of programs in MATLAB that can solve a 

system of nonlinear reaction-diffusion equations using the Galerkin method, and then use them 

to analyze the pattern formation capabilities of a particular system in the context of 

morphogenesis.  In particular, we are looking for nonhomogeneous steady-state and periodic 

solutions of the Gray-Scott model, a particular two species reaction-diffusion system in two 

dimensions [18].  Along the way we use the method to test certain one-dimensional nonlinear 

reaction-diffusion equations such as the Burgers equation and the Allen-Cahn equation [4].   

 For the Gray-Scott model, we will also analyze the ODEs created by the lower degree 

Galerkin method solutions, and find regions in parameter space near which particular 

equilibrium points of the solution undergo Hopf bifurcation.  We also use the principles of 

spectral analysis to find conditions on the diffusion parameters that exhibit diffusion driven 

  



 

 

7 

 

instability.  This analysis helps us to find parameter values for which the solution exhibits 

periodic behavior and nonhomogeneous steady-state solutions.   

Intrinsic to this study is an awareness of the complexity of these systems.  In a 

mathematical context, complex does not simply mean complicated.  Rather, complexity 

describes the phenomenon whereby complicated structures arise from the simple interactions of 

interconnected individual particles.  The structures that emerge from these interactions are not 

virtually random like chaotic systems, but are intricately structured.  However, the eventual 

organization of a system will not immediately follow from the rules of interaction for the 

particles, and could not possibly be extrapolated from an examination of a particular particle by 

itself.  One would use complexity to describe the way that the interaction of each individual ant 

with its neighbors and the environment gives rise to a seemingly conscious colony, or how 

individual water and air molecules acting according to physical and chemical principles can form 

highly ordered weather structures like storm clouds and tornadoes.  Our morphogenesis model is 

yet another application of this concept.  We propose that some of the complicated patterns 

exhibited in living organisms with such a high level of reproducibility are controlled by the 

simple interactions of morphogens in highly interconnected networks of individual cells.  The 

purpose of studying this type of complexity is to gain clues about the characteristics of an 

aggregate structure from knowledge of the way individual particles interact, without resorting to 

isolating the particle from its neighbors.  We would like to know not only how an individual 

particle affects the entire system, but also what characteristics of the entire system cause the 

particles to organize themselves.  First we will define reaction-diffusion equations and the 

model.   
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2.  Reaction-Diffusion Equations 

 A system of reaction-diffusion equations is a system of equations of the form 

),,,( tD
t

xuufuu
∇+∆=

∂
∂     (2.1)  

over a region , where u  is a vector representing 

the states (in our model morphogen concentrations) of a 

group of substances at time t and position .  A is a 

matrix of diffusion coefficients, which in a two species 

system is typically of the form , and ∆ is the 

Laplacian differential operator acting on u with respect to 

.  It is the second order spatial rate of change of u.  In the most general case, the inputs in 

the reaction function f are u,∇ , the gradient of u with respect to x, x and t (p.5, [1]).  These 

partial differential equations are subject to boundary conditions over  and initial 

conditions.  In these equations the term containing the Laplacian operator is the diffusion term.  

Without the function f, (2.1) is the heat equation, one of the first equations encountered in any 

partial differential equation course.  The heat equation models the diffusion of heat from regions 

of higher temperature, or heat concentration, to regions of lower temperature, which is very 

similar to chemical diffusion.  The function f is called the reaction function because it represents 

the interactions between particles that act to increase or decrease the quantities of each species, 

and may depend on the concentration of particles themselves (u), the gradient of the 

concentrations with respect to space (∇ ), and the location of the reaction in space and time, (x 

and t).  The use of chemical terms is meant merely as an analogy, as reaction-diffusion equations 
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have found broad application in areas other than chemistry, such as neurological signal 

transmission [2], Belousov-Zhabotinsky chemical waves (p159, [2]), geochemical systems 

(p229, [2] ), combustion theory (p114 [2]), and other complex systems.  In particular, the 

Burgers equation, 

  , xxxt uuuu += ε

can be classified as a reaction-diffusion equation and is one of the most important equations in 

the study of fluid dynamics.  We will use it later to test our numerical methods.   

This study is primarily concerned with functions f that depend only on the concentrations 

of the reactants.  This idealization is a good approximation for many chemical reactions held at 

constant temperature, as is often true for biological reactions.  The general system now reduces 

to 

 ).(ufuu
+∆=

∂
∂ D

t
     (2.2) 

This system is augmented by initial conditions,  

)()0,( xhxu = , 

and boundary conditions.  We will be dealing with two morphogens, that is, the vector u will be 

given by: 
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 Murray [11] gives a good overview of several reaction-diffusion equations used to model 

morphogenesis.  The three primary reactions he mentions are Schnakenberg’s reaction, Gierer 

and Meinhardt’s activator/inhibitor model, and Thomas’ experimental model.  Schnakenberg’s 

  



 11 
 
model is mathematically accessible, but has not found much biological application.  It is given in 

nondimensionalized form by 

.)(

,)(
2

2

vuvvav
uduvbu

t

t

∆++−=

∆+−=

γ

γ
     (2.6) 

Gierer and Meinhardt [10], [5] proposed the following model which is known as an 

activator/inhibitor system.   
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The nondimensionalized parameters are the same as above.  For this equation we will call u the 

activator, since it acts to increase the population of both chemicals, and v will be the inhibitor, 

since it decreases the rate of change over time for each morphogen.  For patterns to occur, Gierer 

and Meinhardt showed that d>>1, in other words, that the inhibitor must diffuse significantly 

faster than the activator.  As an illustration, consider a predator/prey system [14].  Think of the 

prey as the activators and the predators as the inhibitors.  The predators, cheetahs for instance, 

‘diffuse’ faster than the prey, antelope.  Where the antelope gather together they create an 

environment where more of their kind can thrive, but the fast moving cheetahs inhibit their 

numbers (through digestion) when they stray from the herd.  Also contact between antelope and 

cheetahs (again through digestion) activates the production of cheetahs.  For the right 

parameters, activator/inhibitor reaction-diffusion systems form dappled patterns where activators 

clump together that can be thought of as analogous to herds of prey species.   
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The reaction-diffusion system that we will focus on is called the Gray-Scott Model.  It 

has been studied numerically by Pearson, who used a finite difference approach [18].  The 

system is given by  

,)(

),1(
2

2

vkFuvvdv
uFuvudu

vt

ut

+−+∆=

−+−∆=
     (2.8) 

where k is the dimensionless rate constant, F is the dimensionless feed rate, and du and dv are the 

diffusion coefficients.  For our simulations they will typically be du=2 x 10-5 and dv=10-5 which 

are the same values that Pearson used.  Our goal is to understand the effect of the parameters F, 

k, du and dv on the long term behavior of the solutions of the initial-boundary value problem 

associated with (2.8).  We would also like to understand the effects these parameters have on the 

accuracy of our numerical approximation method.  More concisely, we would like to know what 

causes patterns to form in (2.8) and in reaction-diffusion equations in general.    
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3.  The Galerkin Spectral Method  
 
Our method of numerically simulating reaction-diffusion equations is the Galerkin Spectral 

method.  Whereas many of the most common PDE approximation methods used today, including 

the finite difference method, discretize the problem in space, the Galerkin and other spectral 

methods discretize the problem over a spectrum of functions that are continuous over the whole 

space.  In that sense spectral methods are more global in nature.  This spectrum of functions, 

which is chosen according to the boundary conditions, forms an orthogonal basis for the function 

space in which we seek the solution of the PDE.  To implement spectral methods we construct an 

approximate solution that is a linear combination of unknown time functions coupled with 

known spatial basis functions that satisfy the boundary conditions associated with the PDE.  The 

procedure is analogous to using Fourier analysis to express any bounded continuous function as a 

linear combination of sine and cosine functions at various frequencies. 

 The concept of finding a set of basis functions with which we can represent all manner of 

functions that satisfy the boundary conditions is central to spectral methods, and should be 

explained further.  In finite dimensional vector spaces, a basis is a linearly independent set of 

vectors such that any vector in the vector space can be written as a linear combination of the 

basis vectors.  To illustrate, let V be a finite dimensional vector space over the field A and B=(β1, 

β2,…, βm) be a basis in V.  Then for each v in V there are constants , also called the 

coordinates of v in the basis, such that 

Aai ∈

 .    (3.1) mmaaav βββ +++= ...2211

Since (3.1) is true for all vectors v in V then we say that B spans the vector space.  For B to form 

a basis of V, it must do more than just span the entire vector space.  B must also be a be linearly 
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independent set, meaning that no single basis vector in the set can be written in terms of the 

others.  In that sense, a basis is the smallest sized set that can span a vector space.  We often 

choose basis vectors in such a way that they are mutually orthogonal, that is if (a,b) represents 

the inner product then  

0),( =ji ββ when i ≠ j.    (3.2) 

Equation (3.2) will help us compute the coordinates ai from (3.1).  Taking the inner product of 

both sides of (3.1) with a fixed basis vector βi yields  or ),(),( iiii av βββ =

),(
),(

ii

i
i

va
ββ
β

= .      (3.3) 

 An important property of a set of basis vectors is that it helps define what is called a weak 

characterization of the zero vector:   

 0   if and only if ( for all i.  (3.4) ≡v 0), =iv β

We will see later that a similar characterization for infinite dimensional function spaces will 

prove essential to the Galerkin Spectral method.  For more on vector spaces and basis sets, see 

Chapter 2 of [7]. 

Finite dimensional vector spaces differ from their infinite-dimensional counterparts in 

one important respect.  In finite dimensions, as long as the number of linearly independent 

vectors in a set is equal to the dimension of the vector space, the set will span the entire space.  

The fact the vectors in the set are linearly independent and span the vector space means that the 

set is a basis for the vector space.  In an infinite dimensional vector space, however, we cannot 

be sure that a particular set is a basis even if it contains infinitely many linearly independent 

vectors because we do not know whether or not the vectors span the space.  The space in which 
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the solutions to our partial differential equations lie, the set of bounded functions defined over 

the domain Ω which satisfy the boundary conditions, is an infinite dimensional function space.  

We must, therefore, be thorough when determining whether or not a proposed set of basis 

functions spans a vector space.   

Before we go any further, let us define orthogonality for our infinite dimensional function 

space.  Let f(x) and g(x) be real-valued functions in the space.  Their inner product (f,g) is 

defined as 

∫
Ω

= dxxgxfgf )()(),( .     (3.5) 

When f and g are orthogonal this inner product is zero.     

Let be an orthogonal set of basis functions from the function space G.  

Since the functions in C are orthogonal, they automatically satisfy the linear independence 

condition.  In addition the set C must also be complete in G, that is, it must also be possible for 

any function f in G to be expressed as a linear combination of this infinite set of basis functions.  

More concisely, for each f in G,  

,...},,{ 321 φφφ=C

)()(
1

xaxf i
i

iφ∑
∞

=

=      (3.6) 

for some constants {a1, a2, a3,…}. 

Equality in (3.6) means: 

0)()(lim
1

=−∑
=

∞→
xaxf i

M

i
iM
φ , 

where  

∫
Ω

== dxxgggg 22 )(),( . 
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Let H be the set of all one-dimensional, square integrable, real-valued functions defined 

on [0,1] that vanish at the endpoints: 

 }0)1()0(,|]1,0[:{ ==∞<→= ffgRfH . 

A well-known result from Fourier analysis states that the set 

),...}sin(),...,2sin(),{sin( xnxxC πππ=   (3.7) 

forms a basis for H ([6] sec. 5.3.3).  Just as we expressed any vector in a vector space in terms of 

coordinates with respect to a set of basis vectors, given by (3.3), we can express any function in 

H in terms of coordinates with respect to C.  Using the orthogonality of sin(iπx) over the domain 

[0,1], which means 

(sin(iπx), sin(jπx))=0   if i ≠ j,      (3.8) 

we see that  

))(),((
))(),((

xx
xxfa

ii

i
i φφ

φ
= .     (3.9)   

Notice that if we remove any of the functions in C with an even coefficent inside the sine 

function to form a new set C*, we will still have infinitely many orthogonal functions that satisfy 

the boundary conditions, but will no longer have a basis for H since not every function in H can 

be written as a linear combination of the functions in C*.  For example, consider removing 

sin(2πx) from C to generate C*.  If C* were a basis for H then we could write sin(2πx) in terms 

of its coordinates.  However, each of the ai are determined by (3.9): 

,0
))sin(),(sin(
))sin(),2(sin(
==

xixi
xixai ππ

ππ   
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where i can be every natural number except for 2.  Since each of the coordinates is 0, then 

sin(2πx) would have to be the 0 function, a contradiction.  C* cannot, therefore, be a basis for H 

even though it consists of infinitely many linearly independent functions in H.   

The Galerkin Spectral method searches for solutions of the PDE system in terms of linear 

combinations of the basis functions multiplied by unknown functions in time.  The fact that the 

domain on which we are looking for the solutions is bounded assures us that we will be able to 

form a basis with countably many basis functions.  The unknown functions in time are then 

found by solving the now countably many ODEs that are created by substituting the template 

solution into the PDE. 

For the reaction-diffusion system given by (2.2)  

)(ufuD
t
u

+∆=
∂
∂

     (3.10)
 

we define the differential operator 

).()( ufuDuuL t −∆−=     (3.11) 

Note that (3.10) is equivalent to  

L[u]=0.      (3.12) 

We search for solutions to (3.10) of the form: 

)()(),(~
1

xtatxu i
i

i φ∑
∞

=

= ,    (3.13) 

where the functions φi(x) satisfy the appropriate boundary conditions.  To find the unknown ai(t), 

we now substitute (3.13) into (3.12) and use the characterization of zero similar to (3.4): 

0)( ≡xg if and only if (  for all i.  (3.14) 0))(),( =xxg iφ
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This characterization is computationally useful because in order to show that a function is zero 

for each value in its continuous domain, one must only show that the countably many (but 

infinite) conditions in (3.14) are satisfied, namely that the inner product of each basis function 

with g is zero.  Setting  in this sense, we are left with the countable conditions:  ( ) 0~ =uL

( )
( )
M

,0]~[,
,0]~[,

2

1

=
=

uL
uL

φ
φ

      (3.15) 

The inner product operation in (3.15) removes spatial dependence and these conditions leave us 

with a system of ODEs in terms of the unknown coefficients ai(t).  In practice, instead of using 

infinitely many basis functions in (3.13), we truncate the solution template at some finite number 

N.  Thus in (3.15) we would have N ODEs in N unkowns.  To find the initial conditions needed 

to solve (3.15), we use the initial conditions in the original PDE, 

 u(x,0)=h(x) .       

Since (3.13) must satisfy these initial conditions as well, we impose the following conditions on 

the ai(t): 

  ).()0,()0,(~)()0(
1

xhxuxuxa i
i

i ===∑
∞

=

φ

Thus the initial condition for each function ai(t), ai(0), is given by its coordinate for h(x) in terms 

of the basis functions.  By (3.9) we have an explicit formula; 

 
))(),((
))(),((

)0(
xx
xxha

ii

i
i φφ

φ
= . 

Now that we have N ODEs in N unknowns with initial conditions, we can solve for the 

ai(t) and then use them to construct an approximate solution for the PDE.  We can solve these 
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ODEs numerically using any number of ODE solving packages found in mathematical software 

such as MATLAB and Mathematica.   

We will now illustrate the steps associated with the implementation of the Galerkin 

method on the following basic reaction-diffusion equation in one space dimension: 

 )u ,     (3.16)  (ufduxxt +=

where d is a constant real number.  The spatial domain is D=[0,1].  The equation in (3.16) is 

subjected to Dirichlet boundary conditions, 

0),1(),0( == tutu ,     (3.17) 

and initial conditions,    

)()0,( xgxu = .     (3.18) 

Step 1. Choose the basis functions and solution template:  The primary precondition for this 

choice is that the basis functions satisfy the boundary conditions.  If  is our 

basis then the solution template is of the form: 

,...},,{ 321 φφφ=C

 
    (3.19)

 .)()(),(~
1
∑
=

=
N

n
nn xtaxtu φ

For the boundary conditions in this example we will choose  

 ) ,      (3.20) sin()( xnxn πφ =
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where n is an integer since (3.20) is zero when x=1 and x=0.  Other considerations for this choice 

have to do with the type of solution that one expects, the information about the solution that we 

are trying to extract, and of course the level of complexity that our numerical simulator is 

prepared to handle.  Certain basis functions may be more natural for the solution; a continuous 

solution would probably be better represented in a continuous basis set of functions.  The 

individual modes of the basis functions may have physical interpretations for the model, and we 

can choose a basis set that takes advantage of these interpretations to reveal certain properties 

about the model.  Later, when we look at the Gray-Scott model, the 0 mode solution will 

represent the system without diffusion, and we can ‘add’ diffusion to our approximations by 

taking the solution with more modes.  Table (3.1) gives examples of Fourier basis functions one 

can use for the boundary conditions listed in the left column.   

Table 3.1 

 

Type of Boundary Conditions Fourier basis to use 

Periodic einπx 

Dirichlet: u(0,t)=0, u(1,t)=0 sin(nπx) 

Neumann: ux(0,t)=0, ux(1,t)=0 cos(nπx) 

Mixed:  ux(0,t)=0,  u(1,t)=0 






 +

2
)21(cos xn π  
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There are a variety of basis functions that will work with a given set of boundary conditions.  If 

we did not want to use Fourier basis functions for one reason or another, we could look for 

Chebyshev and Legendre polynomial bases as well as wavelets.   

Step 2.  Substitute template into differential operator and obtain a set of ODEs in time:  

Our differential operator will be  

)()( ufduuuL xxt −−= .    (3.21) 

Substituting  from (3.19) into (3.21) we have:            
 

            (3.22) 

hat th on  deriv ive ha been replaced in (3.22) with the constant -n2π2 because 

( ) 22 .  In order to obtain the an(t), we set (3.22) equal to zero using 

the weak formulation described in (3.14) and (3.15): 

 

Notice that the inner product operation and the summation operations commute because 

integration is a linear operation.  The functions are orthogonal on the interval 

,1]  and when m=n, (sin(mπx), sin(nπx))=1/2 so (3.23) now takes the form: 

u~

Notice t e sec d at s 

 nnn
.)sin()()sin()()sin()()~(

11

22

1






−





+′= ∑∑∑
===

N

n

N

n

N

n xntafxntandxntauL ππππ

)sin()sin( xnnxn xx πππ −=

( ) )sin()(),sin()sin(),sin()( 2 xntafxmxnxmntad nn = − ∑∑ ππππ( )

{ } )23.3(.,...,2,1

0)sin(),sin()(
11

2

1

Nm

xnxmta
N

n

N

n

N

n
n

=
















+′∑

===

πππ

[0

)sin()( xnxn πφ =

















−

−
=

′
∑
=

)()(,)()(
22

)(
1

22

xtafxtadmta
n

N

n
nmm

m φφπ    (3.24) 
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( )
( ) ( ))(),sin(2

)sin(),sin(
)(),sin()0( xgxm
xmxm

xgxmam π
ππ

π
==

Step 3. Find the Initial conditions for the ODEs:  In order to find a unique solution to a system 

 in the system.  For 

the initial conditions, we use (3.9) to get  

(3.25)
 

for m=1,...,N.   

linear, then the system of ODEs will be nonlinear, and 

ate solution using a numerical ODE 

a’s NDSolve.  The main computational costs 

he last term in (3.24) which is the nonlinear term.  We use forward time stepping 

methods primarily, such as the Runge-Kutta methods built into the MATLAB and Mathematica 

ODE solvers.  Many reaction-diffusion equations have a property called stiffness that causes 

forward time stepping methods to become unstable unless the time step is made extremely small.  

MATLAB and Mathematica use highly adaptive routines that can usually avoid this problem; 

however, the computational cost of solving stiff differential equations could become prohibitive 

even for adaptive solvers.  

Step 5. Reconstruct the solution:  Once we have computed all the coordinate functions an(t), 

we can reconstruct the approximate solution using (3.19).  Since we solved the ODEs 

computationally, our an(t) will not be continuous functions but rather discretized tables of an(t) 

values given at time intervals specified by our numerical ODE solving scheme.  Errors in our 

for m=1,...,N. 

of ordinary differential equations, we need initial conditions for each function

Step 4. Solve the initial value problem for time:  Now we have N ODEs in N unknowns with 

initial conditions.  If the function f is non

we will be forced in most cases to look for an approxim

solver such as MATLAB’s ODE45 or Mathematic

will arise from t
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final approximate solution will arise at several points during the process.  First and foremost, 

they will be due to choosing N too small.  The magnitude of N that one must use to bound the 

imating 

uniqueness theory 

Example 1:  One-dimensional heat equation 

s 

 

e 

 (3.26) 

which can be expressed in operator notation as: 

error at a given value for any particular reaction-diffusion equation is a difficult problem in 

analysis that will not be addressed here.  Errors will also arise from numerically approx

solutions to the ODEs.  When comparing the approximate solution to actual reaction-diffusion 

systems found in nature, we must also take into account errors that arise from approximations 

and simplifications that were made when creating the mathematical model.  

 The tacit assumption made throughout this study is that our initial-boundary value 

problem has a unique solution. This assumption can be made rigorous in the setting of some of 

our problems (for example, the nonlinear Allen-Cahn equation) but remains a formidable open 

problem in mathematical analysis for others including the Burgers equation and the Gray-Scott 

model.  Indeed the complex structure of the periodic and steady-state numerical solutions we 

obtain is an indication of how difficult it will be to develop an existence and 

for nonlinear PDEs.                   

The simplest reaction-diffusion equation is one that does not contain any reaction at all.  Thi

equation is commonly referred to as the heat equation since it has been used extensively to model

the way heat spreads in various media over time.  It is given in one dimension by (3.16) wher

f(u)=0: 

xxt kuu = ,  ),0( Lx∈   
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0)( =−= xxt kuuuL       (3.27) 

u

with initial conditions  

(x,0)=g(x).      (3.28) 

In (3.26) k represents the thermal diff ere Dirichlet boundary 

conditions 

     (3.29) 

and follow the step by step process outlined above.   

Step 1- Choose the basis functions and solution template:  Since we have Dirichlet boundary 

conditions, we choose 

usivity constant.  We consider h

0),(),0( == tLutu

27) we have 

)sin( xnπφ = .  Our solution template is: 

Step 2- Substitute template into differential operator and obtain a set of ODEs in time:  

Substituting (3.30) into (3.

Ln

Using the weak characterization of 0 given in (3.14) and (3.15

    (3.30) .)sin()(),(~ ∑=
N

xntaxtu π
1=n

n L

.0)sin()()sin()(
11

=














+′ ∑∑
== n

n
n

n x
L

ta
L

kx
L

ta
2 NN nnn πππ

  

), this expression gives us the N 

conditions: 

0)sin(),sin()()sin(),sin()( 















 LLLLL nn

1

2

1

=+′ ∑∑
==

xnxmntakxnxmta
N

n

N

n

πππππ . (3.31) 
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Using the fact that: 




≠
=

=

















nm
nmL

x
L

nx
L

m
0

2/
sin,sin ππ

 

(3.31) is red

   (3.32) 

uced to  

)()(
2

ta
L

mkta mm 





−=′ π      m=1,…,N  (3.33) 

since the constant 2
L

The am(0) are nothing more than the Fourier sine c

 factors out of either side.   

Step 3- Find the Initial conditions of the ODEs:  Using (3.9) and the orthogonality of our basis 

set, we have: 

dxxgx
L

m
Lx

L
mx

L
m

xgx
L

m

a
L

m )()sin(2

)sin(),

)(),sin(
)0(

0
∫=













=
π

ππ

π

sin(


. (3.34) 

oefficients of g(x).   

Each of the ODEs in (3.33) has the solution 

Step 4- Solve the initial value problem for time:   

( ) tL
mk

mm eata
2

)0()(
π−=  

which can be verified by direct substitution.   

Step 5- Reconstruct the solution:  Using our solution template, (3.30), we have  
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,)sin()0(),(
1
∑
=

=
n

n x
L

eaxtu
 

( )~
2

−
N

tL
nk nππ

where an(0) is the nth Fourier sine coefficient of the initial condition.  This is indeed the N-th 

partial sum of the true solution of the heat equation with Dirichlet boundary conditions which 

can be derived by more traditional methods such as separation of variables.   

Example 2: The Burgers equation - A one-dimensional nonlinear reaction-diffusion equation 

We will now demonstrate how the implementation changes when a nonlinear reaction is added to 

the problem.  A common nonlinear reaction-diffusion equation used in the modeling of 

turbulence and airflow is the Burgers equation,   

main as the heat equatio

0)( =+−= xxxt uuuuuL ε .  (3.35) 

In the Burgers equation the quantity u is related to the density of the fluid being modeled and the 

, 

418-427) that when ε = 0 that the typical initial disturbances in u form discontinuities known as 

shock waves and yet when ε>0 solutions that start out smooth remain smooth for all time.  The 

computational challenge in this problem is to gain insight into the Galerkin method’s response 

for small but positive viscosities.  We will analyze (3.35) over the interval [0,1] subject to 

Dirichlet boundary conditions on the same do  n above (3.29) with L=1.  

The initial condition we consider is: 

(3.36) 

term xxuε  represents viscous dissipation in the model.  It is known (see Malek-Madani [13]


==

.0
)()0,(

otherwise
xgxu   

 ∈− ]2/1,4/1[)8cos(1 xxπ
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Just as before, the boundary conditions lead us to choose the basis )sin( xjj πφ = .  Proceeding 

through the Galerkin method using steps 1-5 and the relationship (3.32), we arrive at the 

equations: 





−′ NN

mm
mta 22

22
)( επ




 ′−= ∑∑
== j

jjn
n

n
m xtaxtaxta

11
)()()()(),()( φφφ  

We can simplify the nonlinear term for ease of programming: 

where a is a 1xN row vector whose entries are the ai,  i=1,..,N, and P is the matrix defined by  

( ) ')()(),()()()()()()(),(
1 111

aaPxxxtataxtaxtax m

N

n

N

j
jnmjn

N

j
jjn

N

n
nm =′′=








′′ ∑∑∑∑

= ===

φφφφφφ  

( ))()(),(),( xxxjiP jimm φφφ ′=  

It is easy to show that 







≠−≠+

=+−

).()(,0

,,4

imjandimj

i

imji

π

π

 

 =−= ,,4),( imjjiPm

Therefore, the Galerkin method reduces to N differential equations in N unknowns of the form  

The initial conditions for the above system are given by (3.9) as  

)'(2)()( 22 aaPtamta mmm −−=′ επ . 

(sin( )
( ) .)8cos(1)(sin(2

)sin(),sin(
)(),)0(

2/1

4/1

dxxxm
xmxm

xgxmam ∫ −== ππ
ππ

π  

One of the main questions we have regarding the Galerkin Spectral method has to do with the 

magnitude of N that we must pick to accurately describe the system.  This choice will depend on 

 many parameters, the most important being the amount of information we need to extract from
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our approximation.  Figure 3.2 shows Galerkin approximations to the Burgers equation for 8, 32 

sed, the approximate solution 

becomes smoother and displays less oscillations due to the basis functions. 

  

and 64 basis functions at time 1.  We see that as N is increa

 

Figure 3.2 Galerkin approximation to the Burgers equation for various N, ε=.001, t=1. 

Figures 3.3-3.5 show Galerkin Spectral method approximations to the Burgers equation for 

various N and ε values.  In these diagrams, each curve represents our approximate solution at 

time intervals of 0.05 units with a final time of 1 unit.  With N=32 and ε=0.01, the solution 

seems to qualitatively follow the behavior that we would expect from the Burgers equation (Fig 

3.3).  There are only slight oscillations near the base of the cosine function in the initial condition 

for the first time value due to the inability of our smooth basis functions to accurately 

proximate the sharp corners of the non-smooth initial condition.  In Figure 3.4 where we 

decrease ε to 0.001, and keep N at 32, the Galerkin method shows much more oscillations and 

ap

  



 

 

29 

 

Figure 3.4 Burgers’ equation n=32, ε=.001 

Figure 3.3 The Burgers equation n=32, ε=.01 
 

inaccuraci

However, when we increase N to 96, we see that 

the solution begins to behave more smoothly 

despite some lingering instabilities.  When ε is 

increased, the solution at time one has a sharper 

corner and the peak of the solution seems to 

decrease at a slower rate.  This is because ε is 

inversely proportional to the Reynold’s number. 

An ε value of zero would model a fluid with no 

viscosity (inviscid flow), and a shock wave would 

form.  With a positive ε value, the shock dissipates.  

Notice also that the oscillations, which are caused 

by the inability of our basis functions to adapt to 

non-smooth shock wave behavior begins to form 

for smaller ε values decreases with time as a result 

of the diffusion term.  As ε is decreased, the effect 

of the diffusion term is decreased, so we expect 

oscillations to occur earlier and last longer.  This 

evidence clearly indicates that our choice of N 

depends on the parameter ε in the equation.   

es than it did with ε = 0.01 in Fig 3.3.  

Figure 3.5 Burgers’ equation n=96, ε=.001 
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Example 3:  The Allen-Cahn Equation 

This next example illustrates the use of nonhomogeneous boundary conditions as well as 

the difficulty of knowing when one has reached a steady-state solution for some reaction-

diffusion systems.  The Allen-Cahn Equation is given by 

                                                                                                          (3.37)  

Referring to (3.10) we have f(u)=u(1-u2).  Just as Trefethen does in [23], we will consider the 

nonhomogeneous Dirichlet boundary conditions: 

 1),1(,1),1( =−=− tutu ,   (3.38) 

and the initial condition 

 )
2
3sin(47.053.0)()0,( xxxgxu π−+== . (3.39) 

Note that the initial condition satisfies the boundary conditions.  Additionally, g(x) is asymmetric 

about the origin.   

Step 1- Choose the basis functions and solution template:   

With nonhomogeneous Dirichlet boundary conditions, we choose the solution template in the 

following form: 

                                                            (3.40) 

Adding the term x to the solution template ensures that it satisfies the boundary conditions 

(3.38).  This choice is by no means unique, so we have added x, the first function that came to 

mind that satisfied the conditions.  The basis functions will still be  but notice 

that the solution template is not made up entirely of linear combinations of the basis functions.   

Step 2- Substitute the template into the differential operator and obtain a set of ODEs in time: 

Performing the procedures used in (3.22) and (3.23) we are left with ODEs of the form: 

.0)1()( 2 =−−−= uuuuuL xxt ε

.)sin()(),(~
1
∑
=

+=
N

n
n xntaxxtu π

 )sin()( xnxn πφ =
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m=1,…,N.      (3.41) 

Since the basis functions are orthogonal, (3.41) reduces to: 

. (3.42) 

The last term in (3.42) is the most complicated term and will be the most costly to evaluate 

numerically since f is a nonlinear function. 

Step 3- Find the Initial conditions of the ODEs:  Paralleling the procedure we used to get (3.9), 

we must now take into consideration the function x that we added to satisfy the boundary 

conditions.   We start with the initial condition,  

and take the inner product with each basis function: 

Since the basis functions are orthonormal, meaning that they are orthogonal and  for 

all n, our initial conditions are:  

.   (3.43)
 

Steps 4 and 5  -  Solve the initial value problem and reconstruct the solution 

Now as above, we can solve the initial value problem (3.42)-(3.43) in MATLAB (see appendix).   

Figures 3.6 and 3.7 show the approximate solution using the Galerkin method with 8 basis 

functions.  These figures exhibit an important phenomenon known as bistability found in some 
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reaction-diffusion systems.  Notice in Figure 3.7 that before time 45, the solution seems to have 

settled into a nonhomogeneous, wave-like steady-state solution, but suddenly snaps into its final 

nonhomogeneous steady-state solution where u transitions once from –1 to 1.    This property of 

reaction-diffusion equations makes it difficult to say using only computational evidence when a 

solution has reached its steady state and when it is merely lingering in some intermediate state. 

 

Figure 3.6 Allen-Cahn Equation   Figure 3.7 Allen-Cahn Equation 
 

Example 4:   The heat equation in two dimensions 

A few changes are required to reformulate our problem for two dimensions.  We consider the 

heat equation in two dimensions with the heat diffusivity constant, k in (3.27) equal to one: 

   (3.44) 

with initial conditions: 

u(x,y,0)=g(x,y)      (3.45) 

and periodic boundary conditions.  The solution template takes the form: 

.           (3.46) 

0)),,(( =∆−= uutyxuL t
+∈−×−=Ω∈ Rtyx ],1,1[]1,1[),(

),()(),,(~ yxtatyxu mn
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=
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As in one dimension, the basis functions φmn(x,y) are determined by the boundary conditions.  To 

satisfy periodic boundary conditions we choose: 

.      (3.47) 

Notice that 

)

and  

.      (3.48) 

In other words,  is an eigenfunction of the Laplacian operator with eigenvalues -(m2 + n2)π2. 

Substituting (3.46) into (3.44) and using (3.48), we have: 

.  (3.49) 

We now take the inner product of (3.49) over Ω with .  In two dimensions, where complex 

valued functions are allowed, the inner product is defined by  

)(),( ynxmi
mn eyx ππφ +=

( )( )cos()sin()cos()sin(),( ynynixmxmiyxmn ππππφ ++=  

=∆ ),( yxmnφ =−− ++ )(22)(22 ynxmiynxmi enem ππππ ππ ),()( 2222 yxnm mnφππ +−

mnφ

),()()(),()()~( 222 yxnmtayxtauL mn
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++′=

mnφ

∫∫
Ω

= dAyxgyxfyxgyxf ),(),()),(),,(( , 

where ),( yxg  represents the complex conjugate of the function g(x,y).  Approximating the 

infinite sums with finite sums between –N and N, we will be left with (2N+1)2 ordinary 

differential equations in t of the form: 

  



 34 









−−=







 ′ ∑ ∑∑ ∑
−= −=−= −=

),(),,()()(),(),,()( 222 yxyxnmtayxyxta pqmn

N

Nm

N

Nn
mnpqmn

N

Nm

N

Nn
mn φφπφφ  

or equivalently: 
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 (3.50) 

We see that the inner product, 
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is a known quantity for any given p,q,m, and n and thus we have a system of (2N+1)2 ODEs in 

(2N+1)2
 unknowns (the amn(t)).  For our region Ω, the following relationship holds: 
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ππππφφ      (3.51) 

Using (3.51) we can rewrite (3.50) as 

,   (3.52) 

.  To find the initial conditions with orthogonal basis functions we use the 

same process as in the one-dimensional case.  Evaluating (3.46) at t=0, and equating the initial 

condition of the solution template to that of the true solution given by (3.45), we have: 

)()()( 222 nmtata mnmn −−=′ π
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φ . (3.53)  

We take the inner product of (3.53) with each basis function, and for each φij every one of the 

apq(0) disappears except aij(0), resulting in 

)),(),,((
4
1)0( yxyxga ijij φ= .    (3.54)   

With a system of ODEs and initial conditions, we again have an initial value problem for which 

we can obtain a numerical solution.  This system is much larger than the one our scheme 

produced for the one-dimensional equations, and increasing the number of basis functions will 

take significantly more computer time and memory.  Even for the reactionless heat equation it 

takes a few minutes to produce an 8 basis approximation for a solution at time 100.  On the other 

hand, the system of ODEs (3.52) with initial conditions (3.54) could be solved analytically 

because (3.52) is an uncoupled system.  Once we add our nonlinear reaction terms, it will 

become impossible to uncouple the ODEs produced by the Galerkin method, and we will 

normally be required to use numerical methods to solve the system.   

Example 5:  The Gray-Scott Model\ 

This system mentioned in (2.8) will be the focus of our search for patterns.  It is a variant of the 

autocatalytic Selkov model of glycolysis, due to Gray and Scott([5],[21]).   

    (3.55) 
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In the model, u and v represent the concentrations of chemicals U and V, in standard chemistry 

notation u=[U] and v=[V].  The rate of change of the concentrations with respect to time is 

determined both by diffusion, modeled by the Laplacian of the concentrations with respect to 

space, and the chemical reaction rates which depend on the concentrations of the other chemicals 

at any point.  The diffusion coefficients, given by du and dv, are multiplied by the diffusion terms 

for each concentration.  The reactions involved in the Gray-Scott model can be simplified to the 

following reactions: 

      (3.56) 

  .     (3.57) 

Both reactions proceed in only one direction.  Reaction (3.56) proceeds at a rate proportional to 

[U][V]2=uv2 and acts to decrease the concentration of chemical U and increase the concentration 

of chemical V.  Reaction (3.57) converts V to the inert product P at a rate of k[V].  F is a non-

dimensionalized feed rate.  We have four parameters for this system, F and k, the reaction 

parameters, and du and dv, the diffusion coefficients.   

In 1993, John Pearson from Los Alamos National Laboratories published results from 

finite difference simulations of the Gray-Scott model [18].  He used a mesh of 256 by 256 grid 

points and simulated solutions for 200,000 time steps.  With the powerful supercomputers at Los 

Alamos National Laboratories, he was able to produce some very interesting patterns, from 

oscillating labyrinthine stripes, to stable hexagonal patterns of points, to dividing chemical rings 

resembling dividing cells.  We have found some evidence of these remarkable patterns using the 

Galerkin method on much smaller computers for much smaller amounts of time.   

VVU 32 →+

PV →
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As in Pearson’s simulations we start with diffusion coefficients of du=2 x 10-5 and   

dv=10-5, but unlike his 1993 paper, we show patterns that occur with different diffusion 

coefficients as well.  Our simulations take place on the region Ω=[-1,1]x[-1,1] with periodic 

boundary conditions.  We choose the initial condition as a small perturbation from the 

homogeneous equilibrium point (u0,v0)=(1,0).  Unlike Pearson’s step function perturbations, our 

perturbations will be smooth.  Explicitly, the perturbations will be Gaussian spots (a depression 

from 1 for u and a raised impression with a base at 0 for v).  The following is an example of an 

initial condition with a maximum perturbation magnitude of 1/16 and centered at (x,y)=(h,k) for 

both chemical u and chemical v: 

.
16
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11)0,,(

))()((20

))()((20
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kyhx

eyxv
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   (3.58) 

A homogeneous equilibrium point is a point at which the concentrations are equal throughout the 

domain and are not changing with time.  Later we explain how we know (1,0) is a homogeneous 

equilibrium point and we show that it is linearly stable for all reaction and diffusion parameter 

values.  For now it suffices to know that at a stable equilibrium point the concentrations of all the 

chemicals in the system will remain constant over the entire domain, and will return to that 

constant state when slightly perturbed until some outside force acts to push the concentrations far 

enough away from their equilibrium values. 

The purpose of using initial conditions that are small perturbations from homogeneous 

equilibrium points is to mimic the embryo’s transition from a stable, patternless, homogenous 
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state to a state where stable, nonhomogeneous patterns exist.  One of the great breakthroughs of 

Turing’s work in morphogenesis was that he showed examples of homogeneous steady-state 

solutions that appear stable when only the chemical reactions are modeled, but become unstable 

when diffusion is considered.  The system could then move to another steady-state solution, 

which may be nonhomogeneous [25].  Thus a chemical system initially in a state of 

homogeneous equilibrium could take on a variety of patterns, dependant on the reaction and 

diffusion parameters, as a small perturbation of the initial homogeneous state propagates 

throughout the domain.  Murray explains this phenomenon of diffusion driven (or Turing) 

instability found in reaction-diffusion equations more thoroughly in chapter 14 of his text 

Mathematical Biology [15].   

Our solution template is, as in the heat equation: 

              

 is given by (3.47).  We will demonstrate the Galerkin procedure for the first 

equaition in (3.55).  The procedure is identical for the second equation.  Substituting (3.59) into 

the linear operator defined by the first equation in (3.55) we have 
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Using the weak characterization of 0 by setting the inner product with each basis function φpq 

equal to zero, we are left with equations of the form: 

  (3.60) 

The most complicated part of this expression contains the nonlinear terms that come from 

substituting the template solution into uv2.  Simplifying this expression, as we did with the heat 

equation, we have: 

Note the inner product inside the nonlinear term simplifies to:  
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If we truncate the infinite sums keeping only N terms, we will be left with (2N+1)2 equations in 

(2N+1)2 unknowns.  Denoting the sum
N N N N N N

by  
N

we can write 

(3.60) in terms of ODEs of the form: 

 (3.62) 

Using similar reasoning, we can write the second equation in (3.55) as: 

 (3.63) 

In this form (3.62) and (3.63), given appropriate initial data, can be solved numerically on a 

computer package such as MATLAB.  This is made easier by using (3.61) which relies on the 

orthogonality of the basis functions to calculate the large inner product.  We can also calculate 

the inner products ahead of time and store them to be referenced for particular index values.  

Since the time derivative is alone on the left side, we can use MATLAB’s built in ODE solvers 

to calculate the values at a given time.  See the appendix for the programs used in calculating the 

results.   
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4.  The Gray-Scott Model  

The Galerkin Spectral method and our MATLAB programs provide us with a way to produce 

numerical solutions of the Gray-Scott model for given parameter values.  We will now analyze 

the model to determine where in parameter space we might begin looking for patterns.  The first 

step is to examine its homogeneous equilibria.  Recall that the Gray-Scott model is given by: 

vkFuvvdv

uFuvudu

vt

ut

)(

)1(
2

2

+−+∆=

−+−∆=
    (4.1) 

In the homogeneous state the concentrations do not change with respect to space and there will 

be no diffusion.  In other words, the Laplacian terms that represent diffusion go to 0.  The 

resulting equations are: 
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   (4.2) 

It is interesting to note that for periodic or Neumann boundary conditions, (4.2) also results when 

considering only the 0th order Galerkin approximation of (4.1).   

Theorem 4.1:  When using periodic or Nuemann boundary conditions, the diffusionless 

equations describing the reaction kinetics in (4.2) are equivalent to the ODE’s that result from 

the Galerkin method when choosing N=0. 

Proof:   When  as for periodic boundary conditions, or else when 

as for Neumann boundary conditions, .  The 

solution template (3.46) with N=0 now takes the form:  

)(
, ),( nymxi
nm eyx += πφ

)cos() nymx πcos(),(, yxnm πφ = 1),(0,0 =yxφ

( ) ( )




=== ∑∑
= = ).(

)(
,),()(),,(~

0,0

0,0
0,00,0

0

1
,

0

1
, tb

ta
yxtyxttyx

m
nm

n
nm φφ aau    (4.3)  

  Now when we substitute the right side of (4.3) into (4.1), we have 
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Since the coordinate functions  and b  depend only on time, the diffusion terms in (4.3) 

that contain the Laplacian, a spatial differential operator, go to 0.  Removing the subscripts we 

see that (4.4) is equivalent to (4.2): 

0,0a 0,0

  



 42 

.)(
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Thus (4.5), the system of equations that arises for the N=0 case, is equivalent to (4.2).    

Q.E.D. 

The fact that the equilibrium points we are looking for are to be homogeneous allowed us to 

remove the diffusion term.  The fact that they are equilibrium points means that they will not 

change over time, and thus the left side of (4.5) will be 0.  In order to find these homogeneous 

equilibrium points we must now solve the nonlinear system:     
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     (4.6) 

Solving for a in the first equation and substituting into the second equation in (4.6), we see that 

0))(( 22 =++−+ FkFbFkFbb ,   (4.7) 

thus either b= 0, in which case a=1, or else b will be the root of the polynomial 

.  We will show later that the equilibrium point, (aFkFbFkFb ++−+ 22 )( 0,b0)=(1,0) will 

always be stable, even when diffusion is added.  The b coordinates of the other equilibrium 

points are, by the quadratic formula,  

b=
)(2
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FkFkFFF

+
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  (4.8) 
Figure 4.1: This curve gives the values of F and k 

where exactly 2 equilibria exist.  Inside the region 

bounded by the curve and the y axis, there are 3 

equilibria and outside the only equilibrium point is
and using the second equation in (4.6) 

a=(F+k)/b.  (4.9) 

We will name the equilibrium point 

(1,0)=(a0,b0).  The equilibrium point with 

)(2
))((4 22

kF
FkFkFFF

b
+
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= , we will 

call (a1,b1), and the point with  
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FkFkFFF

b
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=  will be 

(a2,b2).  The coordinate b1 will always be 
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less than the coordinate b2 and a1 will always be greater than a2. We will call (a0,b0)=(1,0) the 

independent equilibrium point and the other two dependent equilibrium points since they depend 

on F and k.   The dependent equilibrium points will only exist when FFk −≤ 2 .  In that 

region of F-k space, (4.2) has three equilibrium points  (See fig 4.1).  Elsewhere, (a0,b0) is the 

only equilibrium point.  This is illustrated in Figure 4.1, which is also reproduced in [18].  Using 

calculus we can find the maximum k value where there will be exactly 2 equilibrium points: 

 FFk −=
2

 

1
4

1
−=

FdF
dk . 

The critical point is at F=k=1/16=0.0625 as it 

appears to be in Figure 4.1.  The maximum value 

of F for which the dependant equilibrium points 

can exist (see Figure 4.1) occurs at the larger 

value for which exactly two equilibrium points 

exist when k is equal to 0.  The values of F for 

which there are exactly two equilibrium points 

with k=0 are given by 
2
FF = .  Solving for F we have F=0 and F=1/4 as indicated in Figure 

4.1.  Thus, region of F-k space on which the dependent homogeneous equilibrium points exist is 

bounded by  

Figure 4.2 Field plot and equilibrium points 
of the ODE system (4.2) for F=0.03, k=0.04.   

.16/10
4/10

≤≤
≤≤

k
F       (4.10)  

Figure 4.2 shows the equilibrium points and the vector field plot of the differential 

equation in the ab plane for F=0.03 and k=0.04.  At these particular parameter values, there are 

three equilibrium points.  Figures 4.3 and 4.4 show the dependence of the equilibrium points 

given by (4.8) and (4.9) on F and k as these parameters are respectively held constant.  In figure 

4.3, the equilibrium points approach each other from either side as k is increased.  In Figure 4.4,  

the equilibrium points appear, traverse around an enclosed path, and vanish as F increases from 
2)16/14/1( k−−  to 2)16/14/1 k−+( .   
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The surface and the contour plot in Figure 4.5 show how the equilibrium points change 

with both F and k.  Analyzing Figure 4.5 we can visualize several properties of the system:  

.
Figure 4.3:  Equilibrium points as k varies and F is 
held constant.

Figure 4.4:  Equilibrium points as F is varied and 
k is held constant

 

 

Theorem 4.2:  When there are exactly two equilibrium points, a=1/2.   

Figure 4.5:  Visualizing the dependence of the equilibrium points on F and k.   

Proof: When there are exactly two equilibrium points, the term under the radical in (4.8) is zero.  

This is true when FFk −=
2

.  Thus we see that the equilibrium point’s a coordinate is at: 
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Now that we have a sense of the dependence of the equilibria on the parameters, we can ask 

whether or not they are stable.  An equilibrium point of (4.2) is defined as stable if small 

perturbations from the equilibrium will eventually settle back to the equilibrium point.  As is 

explained in depth in [10], p. 178-179, [22], p150, and in [15], p. 697-701, the stability of a 

nonlinear system can be determined from the eigenvalues of the matrix obtained by linearizing 

the system about the equilibrim point.  Let u=p and v=q be an equilibrium point of the system, 

so that: 

   .    (4.11) 0),(),( == qpgqpf

We linearize the system about (p,q).   That is, we take a Taylor series expansion of f and g for u 

and v very close to (p,q) and keep only the linear terms.  We set a=(p+ε) and b=(q+δ) where ε 

and δ are small, and find the Taylor series expansion about (p,q):  
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(4.12) 

Noticing that  and , using (4.11), and ignoring the higher order terms of (4.12) 

because they are proportional to the small numbers ε and δ raised to the second degree and 

higher, we rewrite (4.12) as: 
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The solutions to (4.13) depend on the eigenvalues of the matrix 
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which we will call the stability matrix.  The notation indicates that it is evaluated at the 

equilibrium point, (p,q),  where we would like to test stability.   

 The solutions to (4.13) will contain terms with the eigenvalues of J in the exponent.  Thus 

if any of the eigenvalues of J has a positive real part, the perturbations δ and ε will increase 

without bound and the system is unstable.  If J’s eigenvalues have negative real parts, then the 

perturbations will decrease exponentially with time and the system is stable.   

For the Gray-Scott reaction system (4.2), the stability matrix is given by: 
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From (4.15) we can see that the eigenvalues of Jp,q, and thus the linear stability of (4.2) at (p,q), 

depends on the equilibrium points and the parameters F and k.  From (4.6), (4.8) and (4.9), we 

know that the equilibrium points themselves depend on the parameter values F and k, so the 

stability of the eigenvalues depends ultimately on F and k in our model.   

Theorem 4.4:  The independent equilibrium point, (a0,b0)=(1,0) is always stable for (4.2). 

Proof: At (a0,b0),  
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For diagonal matrices, the eigenvalues are the diagonal entries, so (4.16) has eigenvalues of –F 

and –(F+k).  Since the feed rate F and the rate constant k will always be positive number, the 

eigenvalues of (4.16) will always be negative for any valid choice of F and k.   

Q.E.D. 

Theorem 4.5: The dependent equilibrium point, (a1,b1) is always unstable for all plausible 

values of F and k.   

Proof:  At (a1,b1),  
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The determinant of this matrix is 

  ))(()(2))(()( 222
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Since the entries of the matrix are all real, the eigenvalues of the matrix will either be real 

or, if they are complex, complex conjugates of one another.  If we can show that the determinant 

of  is negative, we will know that its eigenvalues are real and that one eigenvalue is positive, 

while the other eigenvalue is negative.  That is because the determinant of a matrix is the product 

of its eigenvalues.  The factor (F+k) is always positive because F and k are both positive values.  

Our goal, therefore, is to show that the term  is always negative for all plausible values 

of F and k.  Note here that from (4.10) that 0  and .   

11baJ

11baJ

)( 2 Fb −

/1≤≤ F 4 16/10 ≤≤ k

 The equilibrium point’s b value, b1, is given by: 

  

)(2
)(4 22

1 kF
kFFFF

b
+

+−−
= .    

The term inside the radical must be between 0 and 1; 

1)(40 22 ≤+−≤ kFFF        

since it must be positive for b1 to be real and since .  It then follows that: 14/12 <≤≤ FF
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222222 )(4)(4)(4 kFFFkFFFkFF +−≤+−≤+− . 

The left inequality is true because  and the right inequality is true because the term 

inside the radical is less than one.  We rearrange the resulting inequality to get b on the left side: 

14/1 <≤F

2222 )(4)(4 kFkFFFF +≤+−−  

)(2
)(2

)(4 222

kF
kF

kFFFF
b +≤

+
+−−

=  

Now we manipulate this expression to get it into a more convenient form: 

F
kF

bF 2
)(
≤

+
 

.0
)(

)(
≤−

+
+− F

kF
kFFbF     (4.18) 

From the original polynomial (4.7), we can get an expression for b2 in terms of b: 

)(
)(2

kF
kFFbFb

+
+−

= .     (4.19) 

Now using (4.18) and (4.19) we can show: 

0
)(

)(2 ≤−
+

+−
=− F

kF
kFFbFFb , 

which means that the determinant of the matrix is negative.  Therefore both its eigenvalues 

are real and one eigenvalue is positive, while the other is negative.  The equilibrium point (a

11baJ

1,b1) 

will always be unstable for valid values of F and k.   

Q.E.D. 
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Fig. 4.6  Eigenvalues of the stability matrix for fixed k as F varies  

Determining stability at the dependent equilibrium points (a2,b2) is slightly more complicated 

than for (a1,b1) and (a0,b0) since it has complex eigenvalues.  Figure 4.6 is a plot of the 

eigenvalues of (4.15) in the complex plane evaluated at the equilibrium points as F varies 

between 0.01 and 0.17 and k is held at 0.4.  The eigenvalues of the dependent equilibrium point 

(a2,b2) are the complex conjugates of one another, and they cross into the left half plane with 

Eigenvalues of the stability matrix of(a.b) 
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Fig 4.7 Presence of  equilibria in the diffusionless Gray-Scott model. 

nonzero imaginary components.  When this occurs, a family of periodic solutions appear 

surrounding the equilibrium point.  This phenomenon is known as Hopf bifurcation and is 

discussed in detail in [15], p 706-719.  The dotted line in Figure 4.7 indicates where in F-k space 

these Hopf bifurcation points will 

occur.  Notice the behavior of the 

eigenvalues in Figure 4.6 in the 

different portions of the vertical line 

at k=0.04.   When we add diffusion 

we will search for patterns around 

this Hopf bifurcation line in 

parameter space reasoning that these 

periodic solutions in the N=0 case 
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might give rise to nonhomogeneous steady-state solutions and periodic orbits when diffusion is 

added.  Figure 4.7 is a reproduction of a similar diagram found in [18]. 

From Figure 4.6 we can also see that, as we established earlier, (a0,b0) is always stable, 

and (a1,b1) is always unstable.  The fact that (a1,b1) has one negative and one positive eigenvalue 

also means that it is a saddle point.  Figure 4.8 shows the phase plane of (4.2) for F=0.011, 

k=0.04.  These parameter values lie between the dotted line and the lower solid line in Figure 

4.7.  At these values we will therefore have three equilibrium points, two of which will be 

unstable.  The small cross in Figure 4.8 indicates the location of (a1,b1), and the circles represent 

the other equilibria.  Since (a1,b1) is a saddle point, it must have an unstable and a stable 

manifold.  That is, there must be a curve along which solutions are attracted and a curve along 

which solutions are repelled.   These are shown in the figure, and they help us understand why 

solutions arising from initial values very close to the stable equilibrium point (a0,b0) sometimes 

follow roundabout trajectories before they finally settle into (a0,b0). 

Fig 4.8 Stable and unstable manifolds of the saddle point (a1,b1) 

Now that we understand the behavior of the system without diffusion, we will try to get a 

sense of what happens once diffusion is added.  We will first derive the conditions for linear 
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stability in the system once the diffusion term is included in the analysis.  Consider the general 

two species reaction-diffusion equation:   

).,(
),,(

vugvdv
vufudu

vt

ut

+∆=
+∆=

     (4.20) 

We apply the standard stability analysis of partial differential equations by analyzing the 

behavior of solutions of (4.20) in a small neighborhood of (u0,v0).  This procedure is similar to 

the stability analysis outlined above.  To that end, we make the substitutions  

.
,

0

0

vvV
uuU

ε
ε

+=
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Linearizing f and g near the equilibrium point (u0,v0) by using a Taylor series expansion about 

(u0,v0), we find that for small ε:  
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But since we are concerned only with very small ε the O(ε2) terms can be ignored.  Also since 

(u0,v0) is an equilibrium point, the constant terms, f(u0,v0) = g(u0,v0) are zero.  We are thus left 

with: 
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where  is the stability matrix  
00 ,vuJ
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of the functions f and g evaluated at (u0,v0).  We also note that 

tt

tt

vV
uU

ε
ε

=
=

    and    . 
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∆=∆
∆=∆

ε
ε
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Substituting U and V into (4.20), dividing out by ε, and ignoring the remaining terms that depend 

on ε, we see that near equilibrium u and v satisfy the following linear partial differential 

equation:   

.
,

dvcuvdv
bvauudu

vt

ut

++∆=
++∆=

     (4.22) 

Now let (u0,v0) be a linearly stable equilibrium point for the diffusionless system 

).,(
),,(
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=
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      (4.23) 

Note that the linearization of (4.23) about (u0,v0) is 
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The assumption that (u0,v0) is linearly stable is equivalent to assuming that the real parts of the 

eigenvalues of are always negative.  Let λ
00 ,vuJ 1 and λ2 be the eigenvalues of .  The fact that 

they are always negative means that:  

00 ,vuJ

0)( 21 <+==+ λλJTrda ,    (4.24) 

and  

0)( 21 >==− λλJDetbcad .   (4.25) 

We seek solutions to (4.14) of the form  

,),,(

,),,(

ij
t

ij
t

Betyxv
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ϕ

ϕ
λ

λ

=

=
     (4.26)  

where φij(x,y) is an eigenfunction of the laplacian operator ∆, i.e., ∆ φij(x,y)= δij φij(x,y) where δij 

is a negative scalar depending on the particular basis function used.  Substituting (4.26) into 

(4.20) yields 

.ij
t

ij
t

ij
t

vijij
t

ij
t

ij
t

ij
t

uijij
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After dividing by e we have: ij
tϕλ
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



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So for solutions described by (4.26) to exist, λ must be an eigenvalue of the matrix 

.
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


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+
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vij

uij
ij ddc

bda
D

δ
δ

    (4.27)    

In order for (4.26) to be a linearly stable solution of (4.20), the eigenvalues  and  of (4.27) 

must all have negative real parts.  Using the properties of determinants and trace, this means that 

aλ bλ

0)()()()(2 >=−+++ ijvuijvuij DDetbcadaddddd δδ , (4.28) 

and 

0)()( <+==+++ baijvuij DTrddda λλδ .  (4.29) 

These are necessary and sufficient conditions for stability, whether or not the eigenvalues are 

complex.   

 One phenomenon that is of interest in pattern formation in reaction-diffusion systems is 

that of diffusion driven instability.  A homogeneous equilibrium point that exhibits diffusion 

driven instability will be stable for the diffusionless system (4.23), but will become unstable once 

diffusion is accounted for.  Diffusion is usually a process that contributes to stability in a system 

by decreasing concentrations where they are unusually high, and increasing concentrations where 

they are lower than the surrounding regions.  In our reaction-diffusion system, we have found a 

region of parameter values for which diffusion breaks the linear stability of a system.  We have 

found evidence of stable periodic and nonhomogeneous steady-state solutions arising in this 

parameter region as the systems proceed away from the unstable homogeneous equilibrium.  

Murray and others ([15],[17]) have shown in other reaction-diffusion systems that pattern 
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formation in the form of periodic solutions and nonhomogeneous steady-state solutions can 

occur for parameter values regions where diffusion driven instability has been shown to exist.  

Perhaps the instability brought on by the normally restorative process of diffusion combined with 

the fact that the system has several stable homogeneous solutions without diffusion is enough to 

make the system unstable enough to drive solutions away from the homogeneous state, while 

remaining stable enough to find the nonhomogeneous steady-state and periodic solutions in 

between homogeneous equilibria that we call patterns.  The following result is a necessary 

condition for diffusion driven instability.   

Theorem 4.6:  In order for diffusion driven instability to occur in a two species reaction-

diffusion equation, the diffusion constants must be unequal.  In other words, in order for a 

homogeneous equilibrium solution (u1,v1) to be linearly stable for the diffusionless system (4.23), 

and linearly unstable for the full system (4.24), . vu dd ≠

Proof:  In order for the homogeneous equilibrium solution (u1,v1) to be linearly stable for (4.23), 

conditions (4.24) and (4.25) must hold, i.e. a+d<0 and ad-bc>0.  If we let the diffusion constants 

equal one another, du=dv=duv, then the left side of condition (4.28) becomes  

)()(22 bcaddadd uvijuvij −+++ δδ . 

The first term in this expression will always be positive.  The second term is also positive since 

is a negative number, the diffusion constant is a positive number, and (a+d) is negative.  The 

last term is also positive, so (4.28) always holds.   

ijδ

 With equal diffusion constants, the left side of (4.29) becomes: 

uvij dda δ2++ , 
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which by similar reasoning is always negative causing (4.29) to hold for all parameters.  Thus 

(u1,v1) always satisfies sufficient conditions for stability in the full system (4.22) and will always 

be stable.  There can be no diffusion driven instability.   

Q.E.D. 

We will now see how this condition can be applied to the Gray-Scott model to find regions of 

diffusion driven instability.  The first thing we would like to show is that the homogeneous 

equilibrium point (a0,b0) remains linearly stable for any choice of F, k and diffusion constant du 

and dv.   

Theorem 4.7: The homogeneous equilibrium solution to the Gray-Scott equations (4.1) at 

(u0,v0)= (1,0) is linearly stable for all feasible values of F, k, du and dv.   

 Proof:  First of all, we know that (u0,v0)=(1,0) is a homogeneous solution for (4.1), because the 

point (a0,b0)=(1,0) is an equilibrium point of the diffusionless system.  In fact, Theorem 4.4 

states that (a0,b0) is linearly stable for all F and k.  For the Gray-Scott reaction-diffusion 

equation, the matrix J from (4.21) is  










+−
−−−

=







=

)(2
2

2

2

kFuvv
uvFv

dc
ba

J , 

and the matrix Dij is given by  
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Substituting the values (u0,v0)=(1,0)  into (4.30) we have 
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The left side of condition (4.28) becomes: 
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)())((2 kFFdkFFddd uvijvuij ++++−δδ . 

Since ijδ  is always negative and the reaction and diffusion parameters are always positive, this 

expression is always positive and (4.28) always holds.   

 For (a0,b0), the left  side of condition (4.29) becomes: 

)()2( vuij ddkF +++− δ . 

This expression is always negative, and thus condition (4.29) holds.  Since both conditions hold, 

the equilibrium point (a0,b0) is stable for all valid reaction and diffusion parameter values.   

Q.E.D.   

 For (u2,v2)=(a2,b2), the other equilibrium point that can be linearly stable for the 

diffusionless system, the conditions for stability in the full system, (4.28) and (4.29), may not 

always be satisfied.  In order to examine the stability of the full system with diffusion, we will 

look at the real parts of the eigenvalues of the stability matrix.  In the Hopf bifurcation region, 

when (a2,b2) first becomes stable, the eigenvalues will always be complex conjugates of one 

another.  Thus the real part of one eigenvalue will be equal to the other.  If this value is negative 

the system is stable, and if it is positive the system is unstable.  Figure 4.9 is a plot of the real 

part of one eigenvalue of the matrix Dij (4.30) for F=0.0154, k=0.04, dv=0.00001, and du values 

of 0.0001 and 0.00002 for the homogeneous equilibrium point (a2,b2) versus . ijδ

Figure 4.9 Real parts of the eigenvalues of matrix (4.30) as −  is increased.  The plot on the left has 

d

ijδ

u=0.00002 and the plot on the right has du=0.0001.  All other parameters are equal at F=0.0154, k=0.04, and 

dv=0.00001. 
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The plot on the left shows that the real part of the greatest eigenvalue of the stability matrix 

never becomes positive, and thus diffusion driven instability does not occur.  On the right, we 

see that the real parts of the initially stable point start negative, but suddenly one real part breaks 

up and becomes positive.  At this point the eigenvalues are no longer complex and the real part 

of the other eigenvalue, which remains negative, is not shown.  The system becomes linearly 

unstable and diffusion driven instability exists.  We will look at patterns for both of these 

diffusion parameters, and see what effect this type of instability seems to have on the system.  

This analysis seems to indicate at least initially that the magnitude of the difference between the 

diffusion parameters of the morphogens is a primary factor in diffusion driven instability.   

 Murray and others have examined diffusion driven instability searching for Turing 

patterns.  Turing’s original idea was that patterns could be driven by the diffusion terms and not 

the reaction terms [15],[17],[25].  We have found some indications of pattern formation inside an 

envelope of parameter values where diffusion driven instability can exist for certain modes and 

diffusion coefficients.  
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Results 
 
This section displays some of the patterns that we observed for various parameter values.  The 

values of the reaction parameters that we used, F=0.0154 and k=0.04, fall above the Hopf 

bifurcation curve of Figure 4.7.  With N=0, therefore (a2,b2) ≈ (0.2748, 0.2016) would be a 

stable, spiral equilibrium point.  Figure 5.1 shows snapshots of our simulated solution of u at 

these parameter values with N=2.  Recall that our diffusion constants are du=2 x 10-5 and dv=10-5.  

Our initial condition is a depression centered at (x,y)=(-0.65, 0.65).  By the time t reaches 5801, 

we can see the form of a morphogen wave which becomes fully established by time 9801.  

Figure 5.1 Simulated solution for u of the Gray-Scott model with N=2.    
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In Figure 5.2 we have plots of a few of the coordinate functions of time from the solution 

template (3.59), the ai,j(t) and bi,j(t) versus time for the solution from Figure 5.1.  Notice that the 

imaginary parts for a0,0(t) and b0,0(t) are essentially 0.  Near time 6000 we see that the coordinate 

functions for the 0,0 modes, which we will call the principal coordinate functions, seem to  

Figure 5.2 - Several coordinate functions of time for F=0.0154, k=0.04, N=2.  Real parts are on the right and 
imaginary parts are on the left.  The captions on the individual pictures refer to the index of the a vector in 
the MATLAB program GAL_PEARSON2D (see appendix). 
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achieve a steady state.  The values they obtain are not far from the spiral homogeneous 

equilibrium of the N=0 problem (a2,b2) ≈ (0.2748, 0.2016).  The coordinate function a1,1(t)  

begins to oscillate steadily around this same time.  This time also corresponds to the time at 

which the wave begins to appear in Figure 5.1. 

 Figure 5.3 shows what happens when we increase N.  We plot u for the same parameter 

values, except that N=4 for times up to 1000.  This time we have placed the initial perturbation 

in the center, but this does not appreciably affect the results.  The perturbation spreads to the 

boundaries and from the site of the perturbation a wave seems to be emanating by time 1000.  

Figure 5.4 shows the contour plots of u with N=4, this time with the initial perturbation off 

center again.  As time increases past 1000, the circular waves emanating from the site of the 

initial perturbation seem to take on transverse wavelike motion, similar to those we saw in Figure 

5.1 but not as clearly defined.   

As N is increased, we are able to use more modes to approximate the solution and thus 

we are able to capture more detail and complexity.  If waves form in the true solution for these 

parameter values, they may not look like those we obtained for N=2 and N=4.  However, if the 

true solutions do indeed have waves, these low level approximations could prove useful in 

predicting the formation of waves for a particular parameter set.  Comparing the solutions near 
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time 1000 for n=2 and n=4, there is little resemblance.  We cannot be confident that our 

simulated solution is close to the true solution until we can increase the number of modes 

without any significant change in the simulated solution.   So far N=4 is the highest number of 

modes we have been able to use with MATLAB.  If we were to use Neumann boundary 

conditions and a smaller region, we might be able to try more modes.   
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Figure 5.3 Surface Plots of N=4 with F=0.0154, k=0.04, for times up to 1000.   
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Figure 3.8 u for 4 basis functions at various times, F=0.0154, k=0.04  
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 64 
 All of the patterns above have been periodic, oscillating with time in a predictable 

manner.  Motivated by our analysis of diffusion driven instability, we alter the diffusion  

Figure 5.5- Gray-Scott Model with new diffusion rates, du=0.0001, dv=0.00001,  N=4, F=0.0154, 
k=0.04, time up to 1000.   The contour maps all represent the concentration of u where red is most 
concentrated and blue is least concentrated except for the final picture which shows the 
concentrations of v near time 1000 right beside its corresponding concentration u.   
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constants to obtain what seems to be a nonhomogeneous steady state solution.  Figure 5.5 

shows our simulated solution for N=4, F=0.0154, and k=0.04.  This time our diffusion 

constants are du = 10-4 and dv = 10-5.  Now the diffusion constants differ by a multiple of 

10 rather than 2 as they did in Figures 5.1-5.4.  We start with a perturbation in the center 

this time.  The initial condition on v is small positive perturbation from zero centered at 

the origin as well.  As the simulation proceeds, we see that the concentration of u initially 

falls off from around the perturbation.  Near the center, u forms a region of high 

concentration and then seems to break into four regions of increased concentration that 

spread towards the boundaries.    This process of forming a concentrated region near the 

center and then breaking off repeats itself until the solution begins to settle into a 

checkerboard pattern of alternating high and low concentrations which then become 

stationary waves.  Notice that the concentration of morphogens u and v are nearly 

complimentary at the final time.  Gierer and Meinhardt showed in their activator/inhibitor 

reaction-diffusion system that the diffusion constants must differ significantly in order for 

patterns to occur [10].   

 We have shown numerical evidence to support the notion that reaction-diffusion 

equations have periodic solutions and nonhomogeneous steady state solutions.  We have 

only used a few modes, and yet we have generated some complicated patterns and 

structures for the Gray-Scott model.  Other researchers have been able to generate and 

classify many of the patterns that can be generated by various reaction-diffusion systems, 

([5], [9],[11],[12],[14],[15],[17],[18],[19],[20],[24],[26],[28]).  These systems, which are 

derived from the most basic physical and chemical laws, seem to take on a life of their 
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own given the right conditions.  As research in this area proceeds, it will be interesting to 

see how well we can predict and control these self-organizing systems.   
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Galerkin Method  
 
BASIS 
function z=basis(n,x,bas) 
%this function sets up a basis function for the cosine basis, the 
chebyshev basis, or the sin basis,  
%the arguments are n- the integer corresponding to the basis function n 
is any integer from zero up. 
%x is the independant variable, in symbolic or numeric form. 
%basis is one of three arguments: 
%1 gives the basis cos(n*pi*x) 
%2 gives the basis sin(n*pi*x) 
%3 gives the chebyshev polynomial basis T(n) 
 
if bas==1 
   %cos basis 
   z=cos(n*pi*x); 
elseif bas==2 
 %sin basis 
 z=sin(n*pi*x); 
elseif bas==3 
 %chebyshev polynomial basis 
 %it works symbolically, or numerically.  basis 
 
 %symbolic clause 
 if isa(x,'sym')==1 
    n=n+1; 
    %T(0) 
    if n==1 
     z=1; 
   %T(1)    
  elseif n==2 
     z=[1,0]; 
     %T(n) n>=3 
  else 
       %first it does it with the vectors and then converts 
       %to syms 
       %polynomials represented as vectors 
       zn1=[1]; 
     z=[1,0]; 
     for j=3:n 
        zn2=zn1; 
      zn1=z; 
        z=conv([2,0],zn1); 
        z=z-[zeros(1,length(z)-length(zn2)),zn2]; 
     end 
       
       %now converting the polynomial back to syms 
       m=length(z); 
     for k=m-1:-1:0 
        zx(m-k)=[x^(k)]; 
     end 
     z=zx.*z; 
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       %this last line converts a vector of syms to the actual 
polynomial 
       z=sum(z); 
  end 
    return 
 
 
 else  
  %this loop does the chebyshev polynomial at a point x    
  n=n+1; 
  if n==1 
     z=1; 
  elseif n==2 
     z=x; 
  else  
     zz(1,:)=ones(size(x)); 
     zz(2,:)=x; 
     for j=3:n 
        zz(j,:)=2*x.*zz(j-1,:)-zz(j-2,:); 
     end 
     z=zz(n,:); 
  end 
 end 
 
else  
   'Error-not a valid basis number.  Try help on BASIS to see what 
numbers are valid' 
   return 
end 
 
GAL_ALLENCAHNQUICK 
function [u,x,t]=gal_allencahnquick(nn,eps2,tvec,xvec) 
%[u,x,t]=gal_allencahnquick(4,.01,100,[-1:.01:1]); 
%gal_pdedisplay(u,x,t); 
%does the allen cahn equation ut=uxx+u-u^3 on -1..1 
%with boundary conditions u(-1,t)=-1, u(1,t)=1,  
%and initial condition u(x,0)=.53*x+.47*sin(-1.5*pi*x) 
 
%setting the global variables for the nonlinearities and nonhomogeneous parts 
for use in the deqn 
global nonhomogeneous 
global nonlinear1 
global nonlinear2 
global nonlinear3 
global eps 
eps=eps2; 
 
tic, 
aa=min(xvec); 
bb=max(xvec); 
for j=1:nn 
   nonhomogeneous(j)=quadl(@nonhomog,aa,bb,[],[],j); 
   initialcond(j)=quadl(@init,aa,bb,[],[],j); 
   for k=1:nn 
    nonlinear1(j,k)=quadl(@nonlin1,aa,bb,[],[],j,k); 
 for m=1:nn 
        nonlinear2(j,k,m)=quadl(@nonlin2,aa,bb,[],[],j,k,m); 

  



 A-4 
  for q=1:nn 
        nonlinear3(j,k,m,q)=quadl(@nonlin3,aa,bb,[],[],j,k,m,q); 
     end 
 end 
   end 
end, 
toc 
'global variables done' 
tic, 
[t,a]=ode45('gal_allencahnquickdeqn',tvec,initialcond); 
'odes solved', 
toc 
 
tic, 
x=xvec; 
m=length(t); 
for j=1:nn 
   sinvec(j,:)=sin(j*pi*x); 
end 
size(sinvec) 
size(x) 
size(a) 
size(a(1,:)) 
for j=1:m 
   u(j,:)=x+a(j,:)*sinvec; 
end, 
toc 
 
 
%functions for the global variables for the nonlinearities and nonhomogenous 
parts 
function y=nonhomog(x,j) 
y=(x-x.^3).*sin(j*pi*x); 
 
function y=init(x,j) 
%y=(.53*x+.47*sin(-1.5*x*pi)-x).*sin(j*pi*x); 
y=(.1*x+.9*sin(-1.5*x*pi)-x).*sin(j*pi*x); 
function y=nonlin1(x,j,k) 
y=x.^2.*sin(j*pi*x).*sin(k*pi*x); 
 
function y=nonlin2(x,j,k,m) 
y=x.*sin(j*pi*x).*sin(k*pi*x).*sin(m*pi*x); 
 
function y=nonlin3(x,j,k,m,q) 
y=sin(j*pi*x).*sin(k*pi*x).*sin(m*pi*x).*sin(q*pi*x); 
 
 
GAL_ALLENCAHNQUICKDEQN 
function dadt=gal_allencahnquickdeqn(t,a) 
%differential equation called in gal_allencahnquick 
global nonhomogeneous 
global nonlinear1 
global nonlinear2 
global nonlinear3 
global eps 
 
nn=length(nonhomogeneous); 
for j=1:nn 
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   nonlin2vec(j)=0; 
   nonlin3vec(j)=0; 
    for k=1:nn 
        for m=1:nn 

nonlin2vec(j)=nonlin2vec(j)+a(k)*a(m)*nonlinear2(j,k,m); 
for q=1:nn 
nonlin3vec(j)=nonlin3vec(j)+a(k)*a(m)*a(q)*nonlinear3(j,k,m,q
); 
end 

    end 
     end 
  end 
dadt=a-eps*pi^2*((1:nn)'.^2).*a+nonhomogeneous'-3*nonlinear1*a-
3*nonlin2vec'-nonlin3vec'; 
 
GAL_BURGERQUICK 
function [t,x,u]=gal_burgerquick(NN,eps,tvec,xvec) 
% this function finds a galerkin approximation to burgers' equation 
% ut=eps*uxx-u*ux  
%for dirichlet boundary conditions u(0,t)=u(1,t)=0 for x=[0,1] 
%eps is the inverse of the reynold's number.   
%sin(j*pi*x) is the basis function used 
%the ODE solver used is ODE45 
% 
%inputs:  NN-- Number of basis functions used 
%         eps-- diffusion parameter, inverse of reynold's number 
%         tvec-- time of simulation- can be either a final time or a 
vector of times 
%               at which the solution is evaluated 
%          
% 
%outputs:  t-- times at which solution is simulated, equal to tvec or 
else output of ode45 
%          x-- points along x axis where x is evaluated, equal to xvec 
%          u-- output, values of u at points along x and t. u has 
length(t) rows and length(x) columns 
% 
%Syntax: 
%   [t,x,u]=gal_burgerquick(32,.01,1,[0:.01:1]) 
% 
%See also: GAL_BURGERQUICKDEQN,GAL_BURGERDISPLAY, GAL_BURGER, 
GAL_BURGERDEQN 
 
tic, 
%find initial values of a's 
initfcn(1,2) 
for j=1:NN 
    init(j)=quadl(@initfcn,1/4,1/2,[],[],j); 
end 
'initial condition finished', 
toc 
 
%create P matrix where 
P(i,j,m)=(sin(j*pi*x)*sin(k*pi*x)*pi*cos(m*pi*x)) 
%uses a trick 
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global P2 eps2 
tic, 
for j=1:NN 
      for k=1:NN 
         for m=1:NN 
            if j+m==k  
             P(j,k,m)=-pi*k/4; 
         elseif abs(j-m)==k 
             P(j,k,m)=pi*k/4; 
              end 
          end 
      end 
  end 
'P matrix finished', 
P2=P; 
eps2=eps 
toc 
 
tic, 
%do ODE routine 
[t,a]=ode45('gal_burgerquickdeqn',tvec,init); 
'odes solved', 
toc 
 
tic, 
%reconstruct solution 
x=xvec; 
for j=1:length(t) 
    u(j,:)=zeros(size(x)); 
   for k=1:NN 
        u(j,:)=u(j,:)+a(j,k)*sin(k*pi*x); 
    end 
end, 
'solution constructed', 
toc 
 
function z=initfcn(y,m) 
z=sin(m*pi*y).*(1-cos(8*pi*y)); 
 
 
GAL_BURGERQUICKDEQN 
function da=gal_burgerquickdeqn(t,a,eps) 
%differential equation referenced in GAL_BURGERDEQN 
 
global P2 eps2 
NN=length(a); 
for j=1:NN 
    nonlin(j)=a'*P2(:,:,j)*a; 
end 
da=-pi^2*eps2*([1:NN]'.^2).*a-2*nonlin';    
 
 
GAL_BURGERDISPLAY 
function M=gal_burgerdisplay(t,x,u) 
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%utility for plotting the output of burger's equation files.   
% 
%inputs:  t-- times at which solution is simulated, equal to tvec or 
else output of ode45 
%          x-- points along x axis where x is evaluated, equal to xvec 
%          u-- output, values of u at points along x and t. u has 
length(t) rows and length(x) columns 
% 
%Output:  M- a movie that shows the evolution of burger's equation over 
time 
%         figure(1) contour plots of u(x,t) 
%         figure(2) surface plot of u(x,t), to show changes over time 
% 
%see also:  GAL_BURGER, GAL_BURGERDEQN, GAL_BURGERQUICK, 
GAL_BURGERQUICKDEQN 
 
cla  
%routine for the titles 
blab=input('what basis? \n','s'); 
tspan=input('what time span? \n','s'); 
xspan=input('what domain? \n','s'); 
n=input('how many basis functions? \n') 
%contour plots of u(x,t) v.s. x 
figure(1) 
view (2) 
plot(x,u','k') 
xlabel('x') 
ylabel('u(x,t)') 
title('Burger''s equation contour plot')  
legend(['n=',int2str(n)],['basis=',blab],['time=',tspan],['x=',xspan]) 
 
%surface plot of u(x,t)in space and time 
figure(2) 
surf(x,t',u) 
xlabel('X') 
ylabel('time') 
zlabel('u(x,t)') 
title('Burger''s equation surface plot')  
legend(['n=',int2str(n)],['basis=',blab],['time=',tspan],['x=',xspan]) 
 
j=input('movie? 1 if no, 2 if yes') 
if j==1 
    return 
end 
    
%movie routine 
figure(3) 
hold off 
plot(x,u(1,:)) 
v=axis 
xlabel('x') 
ylabel('u(x,t)') 
title('Burger''s equation movie')  
m=length(t); 
M=moviein(m); 

  



 A-8 
 
for j=1:m 
    plot(x,u(j,:)) 
    axis(v) 
    M(:,j)=getframe; 
    hold off 
end 
 
 
GAL_HEAT 
%This script file finds a solution for the Heat Equation in one 
dimension using the Galerkin Method 
%on the interval [0,1] 
%and then plots the solution at various times.   
%the amount of time is an input t 
%the number and type of basis functions are inputs n, bn. 
%the boundary conditions u(t,0) and u(t,1) are inputs ut0,ut1. 
 
clear all 
%n is the number of basis functions 
n=4 
 
%bn indicates the type of basis function 
%1 gives the basis cos(n*pi*x) 
%2 gives the basis sin(n*pi*x) 
%3 gives the chebyshev polynomial basis T(n) 
bn=2 
 
%these are the boundary conditions u(t,0)=ut0 and u(t,1)=ut1 
ut0=1 
ut1=2 
 
%%degree of PDE for t 
tdeg=1 
 
%t is the time we let the simulation run 
t=10 
 
%sets up a as a matrix of the functions in time and their derivatives   
%also sets up bv as a vector of symbolic basis functions 
x=sym('x'); 
for j=0:n 
  for k=0:tdeg  
     a(k+1,j+1)=sym(['a',int2str(j),int2str(k)]); 
  end 
  bv(j+1)=basis(j,x,bn); 
end 
a 
bv 
 
%gives a generic linear function to satisfy the boundary conditions 
u(0,t), u(1,t).  We will call this 
%the inital condition function g=u(x,0) 
g=(ut1-ut0)*x+ut0 
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%plugs the assumed solution into the left (eqnl) and right (eqnr) sides 
of the equation.   
%k is the heat constant 
%f is the source (can be in the symbolic variable x if desired) 
 
k=3 
f=1 
ya=a(1,:).*bv; 
ya=[g,ya] 
dyadt=a(2,:).*bv 
 
eqnr=sum(k*diff(ya,x,2))+f 
eqnl=sum(dyadt) 
 
 
%multiplies both the left and right hand sides by the basis function 
and then integrates from 0 to 1 
for j=0:n 
   vl(j+1)=int(eqnl.*bv(j+1),x,0,1); 
   vr(j+1)=int(eqnr*bv(j+1),x,0,1); 
end 
 
global vl 
global vr 
vl 
vr 
 
%since  
bc=zeros(n,1) 
[t,avec]=ode45('gal_heatDEQN',10,bc); 
xv=0:.01:1; 
 
%avec(1,:).*bv 
%sum(avec(1,:).*bv) 
%subs(sum(avec(j,:).*bv),x,xv) 
cla  
hold on 
for j=1:length(t) 
    plot(xv,xv+1+subs(sum([0,avec(j,:)].*bv),x,xv)) 
end 
%computes value for differential equation using the inital conditions 
 
 
GAL_HEATDEQN 
function s=gal_heatDEQN(t,v) 
s(1)=2*(-1/(2*pi)*3*pi^3*v(1)+4/(2*pi)); 
s(2)=2*-6*pi^2*v(2); 
s(3)=2*-1/(6*pi)*(81*pi^2*v(3)-4); 
s(4)=2*-24*pi^2*v(4); 
s=s'; 
 
%global vl 
%global vr 
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%n=length(vl); 
 
%dpolynorm=dpoly/dpoly(1); 
%for j=1:n 
 %  scoeff=sym2poly(vl(j)); 
  % vpoly=sym2poly(vr(j)); 
%  while length(vpoly<2); 
%      vpoly=[0,vpoly]; 
%  end 
%   vcoeff=vpoly(1); 
%  vscalar=vpoly(2); 
% s(j)=vcoeff/scoeff*v(j)+vscalar/scoeff; 
%end 
%s 
 
GAL_PEARSON2D 
function [u,v,ab,X,t,init]=gal_pearson2D(NN,F2,k2,Xvec,tvec) 
%[u,v,ab,X,t,init]=gal_pearson2D(NN,F2,k2,Xvec,tvec) 
%[u,v,ab,X,t,init]=gal_pearson2D(4,.0152,.04,[[-1:.01:1]',[-
1:.01:1]'],1000); 
%this function solves Pearson's 2 morphogen reaction-diffusion equation 
in 2 dimensions 
%using the galerkin spectral method with periodic boundary conditions.  
The resulting ODE's are solved 
%using ODE45 (runge kutta 4 method, forward time differencing). 
% 
%the equations are defined as 
% 
%ut=du*laplacian(u)-uv^2+F(1-u) 
%vt=dv*laplacian(v)+uv^2-(F+k)v 
% 
%u,v:  The concentrations of each morphogen 
%F:  Dimensionless feed rate 
%k:  Dimensionless rate constant 
%du,dv:  Diffusion constants for u and v respectively 
% 
%%Ref:  Complex Patterns in a Simple System, John E. Pearson, Science, 
V261, 5118, 9 Jul 1993 189-192 
% 
%Inputs:  
%NN2=number of basis functions used 
%F2,k2-scalar parameters 
%Xvec- 2 column space vector, column one is the X coordinate, column 2 
is the Y coordinate 
%tvec- time vector discretizing time for ODE45 
% 
%Outputs: 
%u,v- Morphogen concentrations 
%X- Xvec 
%t- tvec 
% 
%See GAL_PEARSON2DDEQN 
 
%initialize global variables F,k,du,dv,parameters, NN, basis number, 
M2, sparse  
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%inner product matrix 
global F kk du dv  
F=F2; 
kk=k2; 
du=.00002; 
dv=.00001; 
 
 
%finds the vector of constants for the Laplacian, G 
global G 
G=-NN:NN; 
G=G.^2; 
n=1; 
for k=G; 
    G2(:,n)=G'+k; 
    n=n+1; 
end 
G=G2(:); 
 
%finds initial condition 
tic, 
for p=-NN:NN 
   for q=0:NN                  %-NN:NN           
        %initu(p+NN+1,q+NN+1)=quadl(@initcondu,-
1,1,[],[],p)*quadl(@initcondu,-1,1,[],[],q); 
        initu(p+NN+1,q+1)=dblquad(@initcondu,-1,1,-1,1,[],@quadl,p,q-
NN); 
        initu(NN+1-p,2*NN+1-q)=conj(initu(p+NN+1,q+1)); 
        %initv(p+NN+1,q+NN+1)=quadl(@initcondv,-
1,1,[],[],p)*quadl(@initcondv,-1,1,[],[],q); 
       initv(p+NN+1,q+1)=dblquad(@initcondv,-1,1,-1,1,[],@quadl,p,q-
NN); 
      initv(NN+1-p,2*NN+1-q)=conj(initv(p+NN+1,q+1)); 
  end 
end, 
initu=initu(:)/4; 
initv=initv(:)/4; 
init=[initu;initv]; 
'init matrix finished', 
toc 
 
%Calling the ODE solver 
%[t,ab]=ode45('gal_pearson2Dexpdeqn',tvec,init);, 
tic, 
[t,ab]=ode45('gal_pearson2Ddeqn',tvec,init); 
'ode''s solved', 
toc 
 
%constructing the solution 
tic, 
x=Xvec(:,1)'; 
y=Xvec(:,2); 
X=Xvec; 
u=zeros(length(x),length(y),length(t)); 
v=zeros(length(x),length(y),length(t)); 
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for j=1:length(t) 
   for k=1:size(ab,2)/2 
      p=mod(k,2*NN+1); 
      if p==0 
         p=2*NN+1; 
      end 
      p=p-(NN+1); 
      q=ceil(k/(2*NN+1)); 
      q=q-(NN+1); 
      modey=exp(i*pi*q*y); 
      modex=exp(i*pi*p*x); 
      u(:,:,j)=u(:,:,j)+ab(j,k)*modey*modex; 
      v(:,:,j)=v(:,:,j)+ab(j,k+size(ab,2)/2)*modey*modex; 
  end 
end, 
'solution constructed', 
toc 
 
 
 
function z=initcondu(x,y,p,q)   %,k) 
%z=exp(-i*pi*k*x).*(1+.1*(x.^2-1)); 
%z=1-.5*(exp(-20*(x-.1).^2))*(exp(-20*(y)^2));    %-1/16*exp(-20*(x-
.1).^2)*exp(-30*(y-.1)^2); 
z=1-.5*(exp(-20*(x+.7).^2))*(exp(-20*(y-.75)^2));    %-1/16*exp(-20*(x-
.1).^2)*exp(-30*(y-.1)^2); 
z=exp(-i*pi*(p*x+q*y)).*z; 
 
function z=initcondv(x,y,p,q)   %,k) 
%z=exp(-i*pi*k*x).*(.1*(1-x.^2)); 
%z=.25*(exp(-20*(x-.05).^2))*(exp(-20*y^2));   %+1/16*exp(-20*(x-
.15).^2)*exp(-30*(y-.1)^2); 
z=.25*(exp(-20*(x+.7).^2))*(exp(-20*(y-.65)^2));   %+1/16*exp(-20*(x-
.15).^2)*exp(-30*(y-.1)^2); 
z=exp(-i*pi*(p.*x+q*y)).*z; 
 
 

GAL_PEARSON2DDEQN 

function dabdt=gal_pearson2Ddeqn(t,ab) 
%two dimensional head equation differential equation called in 
gal_heat2D.   
%this program sets up the system of differential equations inolving the 
a(m,n)(t) 
 
global F kk G du dv 
NN=(sqrt(length(ab)/2)-1)/2; 
 
a=ab(1:length(ab)/2); 
b=ab(length(ab)/2+1:end); 
%does the a's without the nonlinear part.  The extra 4*Fv is added 
because it is the (phi(0,0),F) term.  For every 
%other equation, this disappears 
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Fv=zeros(size(a)); 
Fv(((2*NN+1)^2+1)/2)=F; 
 
 
dabdtu=(-du*pi^2*G-F).*a+Fv;  %-sum(nonlinear); 
%does the b's 
dabdtv=(-dv*pi^2*G-F-kk).*b; %+sum(nonlinear); 
for j=1:2*NN+1 
    bm(:,j)=b((j-1)*(2*NN+1)+1:j*(2*NN+1)); 
end 
bm2=[zeros(2*NN,6*NN+1);[zeros(2*NN+1,2*NN),bm,zeros(2*NN+1,2*NN)];zero
s(2*NN,6*NN+1)]; 
 
for q=-NN:NN 
    for p=-NN:NN 
        for k2=-NN:NN 
            for k1=-NN:NN 
                for m2=-NN:NN 
                    for m1=-NN:NN 
                        
bmpq(k1+NN+1+(k2+NN)*(2*NN+1),m1+NN+1+(m2+NN)*(2*NN+1))=bm2((p-k1-
m1)+3*NN+1,(q-k2-m2)+3*NN+1); 
                        %bmpq(k1k2,m1m2)                                          
*bm2(p-k1-m1,q-k2-m2) 
                    end 
                end 
            end 
        end 
        nonlin(p+NN+1+(q+NN)*(2*NN+1))=sum(sum((a*b.').*bmpq)); 
        %nonlin(p,q)                  =  sum(ak1,k2 x bm1*m2 x b(p-m1-
k1),(q-m2-k2) 
    end  
end 
dabdtu=dabdtu-nonlin(:); 
dabdtv=dabdtv+nonlin(:); 
dabdt=[dabdtu;dabdtv]; 

 
GAL_1DPDEDISPLAY 

function M=gal_1Dpdedisplay(t,x,u) 
%type gal_1Dpdedisplay(t,x,u) to dislpay the results as a  
%contour map, a surface plot or a movie 
%plotting 
cla  
 
%routine for the titles 
tit=input('input Title\n','s'); 
blab=input('what basis? \n','s'); 
tspan=input('what time span? \n','s'); 
xspan=input('what domain? \n','s'); 
n=input('how many basis functions') 
%contour plots of u(x,t) v.s. x 
figure(1) 
view (2) 
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plot(x,u') 
xlabel('x') 
ylabel('u(x,t)') 
title(tit)  
legend(['n=',int2str(n)],['basis=',blab],['time=',tspan],['x=',xspan]) 
 
%surface plot of u(x,t)in space and time 
figure(2) 
surf(x,t',u) 
xlabel('X') 
ylabel('time') 
zlabel('u(x,t)') 
title([tit,'surface plot'])  
legend(['n=',int2str(n)],['basis=',blab],['time=',tspan],['x=',xspan]) 
 
j=input('movie? 1 if no, 2 if yes') 
if j==1 
    return 
end 
    
%movie routine 
figure(3) 
hold off 
plot(x,u(1,:)) 
v=axis 
xlabel('x') 
ylabel('u(x,t)') 
title([tit,' movie'])  
m=length(t); 
M=moviein(m); 
 
for j=1:m 
    plot(x,u(j,:)) 
    axis(v) 
    M(:,j)=getframe; 
    hold off 
end 
 
 
GAL_2DPDEDISPLAY 

function M=gal_2Dpdedisplay(u,X,t) 
%produces movie images for given 2D pde data in the form: 
%t= time vector 
%X= space, x in column 1, y in column 2 
%u= u(x,y,t)= the value of the function at x,y and t 
 
cla 
tit=input('Input Title\n','s') 
%movie routine 
f=input('Surface(2) or Contour (1)\n') 
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if f==1 
 
hold off 
x=X(:,1); 
y=X(:,2); 
xlabel('x') 
ylabel('y') 
title(tit)  
m=length(t); 
M=moviein(m); 
for j=1:m 
    contour(x,y,u(:,:,j)) 
    title(tit)  
    M(:,j)=getframe; 
    hold off 
end 
 
 
elseif f==2 
 
hold off 
x=X(:,1); 
y=X(:,2); 
u=real(u); 
v=[-1,1,-1,1,min(min(min(u))),max(max(max(u)))]; 
xlabel('x') 
ylabel('y') 
zlabel('u(x,y,t)') 
title(tit)  
m=length(t); 
M=moviein(m); 
for j=1:m 
    mesh(x,y,u(:,:,j)) 
    axis(v) 
    title(tit)  
    M(:,j)=getframe; 
    hold off 
end 
else 
 
   'wrong input' 
 
end 
 
 
GAL_ABRECONSTRUCT 
function [u,v]=gal_abreconstruct(ab,t,init) 
%this function reconstructs u and v from given ab vector, t, and init 
values from  
%2D pde results: 
% 
%inputs:  ab- length(t)xlength(init) vector of coefficient functions 
%          t- times at which coefficient functions are evaluated 
%          init-  initial conditions for the ab same as ab(:,1) 
% 
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%syntax:  [u,v]=gal_abreconstruct(ab,t,init) 
 
tic, 
x=[-1:.01:1]; 
y=x'; 
 
u=zeros(length(x),length(y),length(t)); 
v=zeros(length(x),length(y),length(t)); 
NN=(sqrt(length(ab)/2)-1)/2; 
 
 
for j=1:length(t) 
   for k=1:size(ab,2)/2 
      p=mod(k,2*NN+1); 
      if p==0 
         p=2*NN+1; 
      end 
      p=p-(NN+1); 
      q=ceil(k/(2*NN+1)); 
      q=q-(NN+1); 
      
      modey=exp(i*pi*q*y); 
      modex=exp(i*pi*p*x); 
      u(:,:,j)=u(:,:,j)+ab(j,k)*modey*modex; 
      v(:,:,j)=v(:,:,j)+ab(j,k+size(ab,2)/2)*modey*modex; 
  end 
end, 
'solution constructed', 
toc 

 
 
Gray-Scott Analysis 
 
GAL_2DGS_N0EIGENVALS 
%eigenvalue movie for the diffusionless Grey Scott Model 
% 
%   a_t=-a*b^2-F(1-a) 
%   b_t=a*b^2+(F+k)b 
% 
%This routine creates a movie of the eigenvalues of the derivative 
matrix of {a_t(a,b),b_t(a,b)} 
%evaluated at the equilibrium points of the system in the complex plane 
when k is held constant  
%at .04 and F varies in order to examine local stability of the 
equilibrium points.    
 
cla 
hold on 
k=.04 
xlabel('real axis') 
ylabel('imaginary axis') 
n=1 
Fi=.01 
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Ff=.17 
df=.0001 
for j=Fi:df:Ff 
    F=j; 
    eq0=[-F,0;0,-(F+k)]; 
    eig0=eig(eq0); 
    figure(1) 
    axis([-.25,.15,-.15,.15]); 
    hold on 
    plot(eig0,zeros(size(eig0)),'x') 
    r=roots([F+k,-F,F^2+F*k]); 
    r=sort(r); 
    b=r(1); 
    a=(F+k)/b; 
    eq1=[-b^2-F,-2*a*b;b^2,2*a*b-(F+k)]; 
    eig1=eig(eq1); 
    figure(2) 
    axis([-.25,.15,-.15,.15]); 
    hold on 
    if isreal(b)==1 
        if isreal(eig1)==1 
            plot(eig1,zeros(size(eig1)),'x') 
        else 
            plot(eig1,'x') 
        end 
    end 
     
    b=r(2); 
    a=(F+k)/b; 
    eq2=[-b^2-F,-2*a*b;b^2,2*a*b-(F+k)]; 
    eig2=eig(eq2); 
    figure(3) 
    axis([-.25,.15,-.15,.15]); 
    hold on 
    if isreal(b)==1 
        if isreal(eig2)==1 
            plot(eig2,zeros(size(eig2)),'x') 
        else 
            plot(eig2,'x') 
        end 
    end 
    %M(:,n)=getframe; 
    n=n+1; 
end 
figure(1) 
plot([0,0],[-.15,.15],'k') 
plot([-.25,.15],[0,0],'k') 
xlabel('real axis') 
ylabel('imaginary axis') 
text(-.25,.15,'Eigenvalues of the stability matrix of (a_0,b_0)') 
text(-.23,.125,['k=',num2str(k),', F increases from ',num2str(Fi),' to 
',num2str(Ff)]); 
 
figure(2) 
plot([0,0],[-.15,.15],'k') 
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plot([-.25,.15],[0,0],'k') 
xlabel('real axis') 
ylabel('imaginary axis') 
text(-.25,.15,'Eigenvalues of the stability matrix of (a_1,b_1)') 
text(-.23,.125,['k=',num2str(k),', F increases from ',num2str(Fi),' to 
',num2str(Ff)]); 
 
figure(3) 
plot([0,0],[-.15,.15],'k') 
plot([-.25,.15],[0,0],'k') 
xlabel('real axis') 
ylabel('imaginary axis') 
text(-.25,.15,'Eigenvalues of the stability matrix of (a_2,b_2)') 
text(-.23,.125,['k=',num2str(k),', F increases from ',num2str(Fi),' to 
',num2str(Ff)]); 
 
 
GAL_2DGS_HOPFFIND 
%find value of F where eig2 crosses the axis and becomes stable       
k=.04-->F=.0152786 
%answer gives estimate that is less than the true answer by no more 
than tol 
cla  
hold on 
n=1 
tol=10^-10 
for k=0:.0005:.0625 
    %finds starting F value 
    F=roots([-4,1-8*k,-4*k^2,0]); 
    F=F(F>0); 
    Fmin=min(F); 
    Fmax=max(F); 
    eq3bot(n,:)=[k,Fmin]; 
    eq3top(n,:)=[k,Fmax]; 
    %adds a bit to starting value to be sure that the equilibrium is 
real but not  
    %enough to make it stable 
    F=Fmin+.00001; 
    %initializes eig2 for while loop 
    r=roots([F+k,-F,F^2+F*k]); 
    r=sort(r); 
    b=r(2); 
    a=(F+k)/b; 
    eq2=[-b^2-F,-2*a*b;b^2,2*a*b-(F+k)]; 
    eig2=eig(eq2); 
     
    %set initial step value 
    d=.001; 
    %outer while loop decreases step value until it is within tolerance 
    while d>tol     
        %inner while loop tests eig2 for stability 
        while real(eig2)>0 
            F=F+d; 
            r=roots([F+k,-F,F^2+F*k]); 
            r=sort(r); 
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            b=r(2); 
            a=(F+k)/b; 
            eq2=[-b^2-F,-2*a*b;b^2,2*a*b-(F+k)]; 
            eig2=eig(eq2); 
        end 
        %sets F to just above where it broke the while loop so it can 
go through again at  
        %higher tolerance with a reinitialized eig(2) 
        F=F-d; 
        r=roots([F+k,-F,F^2+F*k]); 
        r=sort(r); 
 
        b=r(2); 
        a=(F+k)/b; 
        eq2=[-b^2-F,-2*a*b;b^2,2*a*b-(F+k)]; 
        eig2=eig(eq2); 
         
        %decreases step value 
        d=d*.1; 
    end 
    %stores answers 
Fhopf(n)=F; 
n=n+1; 
end 
 
eq3=[eq3bot([2:end],:);flipud(eq3top)]; 
plot(eq3(:,1),eq3(:,2)) 
kvec=eq3bot(2:end,1); 
Fhopf=Fhopf(2:end); 
plot(kvec',Fhopf,'--') 
 
 
GAL_2DGS_FIELDPLOTS 
%plots fieldlines and equilibrium points.  Can be altered to make a 
movie as F is varied 
n=1 
figure(2) 
for j=.0154 
cla 
hold on 
 
F=j 
k=.04 
umin=0 
umax=1 
vmin=0 
vmax=1 
spa=20 
time=100 
 
%plotting the roots of the equation 
plot(1,0,'ro','markersize',15) 
eq0=[-F,0;0,-(F+k)] 
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eig0=eig(eq0) 
 
r=roots([F+k,-F,F^2+F*k]); 
r=sort(r); 
if isreal(r)==1 
    plot((F+k)./r(1),r(1),'r+','markersize',15) 
    plot((F+k)./r(2),r(2),'ro','markersize',15) 
end 
text(umax-.1*(umax-umin),vmax-.1*(vmax-
vmin),[num2str(umax),',',num2str(vmax)]); 
text(umin+.1*(umax-umin),vmin+.1*(vmax-
vmin),[num2str(umin),',',num2str(vmin)]); 
 
 
b=r(1); 
a=(F+k)/b; 
eq1=[-b^2-F,-2*a*b;b^2,2*a*b-(F+k)] 
eig1=eig(eq1) 
 
b=r(2); 
a=(F+k)/b; 
eq2=[-b^2-F,-2*a*b;b^2,2*a*b-(F+k)] 
eig2=eig(eq2) 
 
for j=linspace(umin,umax,spa) 
    for m=linspace(vmin,vmax,spa) 
        [t,u]=ode45('gal_pearson0deqn',time,[j,m],[],F,k); 
        plot(u(:,1),u(:,2)) 
    end 
end 
 
xlabel('u') 
ylabel('v') 
title(['F=',num2str(F),' k=',num2str(k), ' time=',num2str(time)]) 
axis([umin,umax,vmin,vmax]) 
%M(:,n)=getframe; 
n=n+1; 
end 
 
 
GAL_PEARSON0DEQN 
%function used in Gray Scott Analysis functions for the N=0 
differential equation 
function dabdt=gal_pearson0deqn(t,ab,flag,F,k) 
dabdt(1,1)=-ab(1).*ab(2).^2+F*(1-ab(1)); 
dabdt(2,1)=ab(1).*ab(2).^2-(F+k)*ab(2); 

  



 A-21 
 
GAL_DDINSTABILITY 
clear all 
F=.0154  
k=.04 
du=.00002 
dv=.00001 
 
n=1; 
modes=0:10:5000; 
for mn=modes; 
    b=(F+sqrt(F^2-4*F*(F+k)^2))/(2*(F+k)); 
    a=(F+k)/b; 
    M=[-b^2-F-mn*du,-2*a*b;b^2,2*a*b-(F+k)-mn*dv]; 
    eva=eig(M); 
    y(n)=real(eva(2)); 
    n=n+1; 
end 
plot(modes,y); 
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